Coverart for item
The Resource Thermal design : heat sinks, thermoelectrics, heat pipes, compact heat exchangers, and solar cells, HoSung Lee

Thermal design : heat sinks, thermoelectrics, heat pipes, compact heat exchangers, and solar cells, HoSung Lee

Label
Thermal design : heat sinks, thermoelectrics, heat pipes, compact heat exchangers, and solar cells
Title
Thermal design
Title remainder
heat sinks, thermoelectrics, heat pipes, compact heat exchangers, and solar cells
Statement of responsibility
HoSung Lee
Creator
Subject
Language
eng
Summary
"The proposed is written as a senior undergraduate or the first-year graduate textbook,covering modern thermal devices such as heat sinks, thermoelectric generators and coolers, heat pipes, and heat exchangers as design components in larger systems. These devices are becoming increasingly important and fundamental in thermal design across such diverse areas as microelectronic cooling, green or thermal energy conversion, and thermal control and management in space, etc. However, there is no textbook available covering this range of topics"--Provided by publisher
Cataloging source
DLC
http://library.link/vocab/creatorName
Lee, Ho Sung
Illustrations
illustrations
Index
index present
Literary form
non fiction
http://library.link/vocab/subjectName
  • Heat engineering
  • Heat-transfer media
  • Thermodynamics
  • Thermoelectric apparatus and appliances
Label
Thermal design : heat sinks, thermoelectrics, heat pipes, compact heat exchangers, and solar cells, HoSung Lee
Instantiates
Publication
Note
Includes index
Contents
  • Thermodynamics
  • 3.2.1.
  • Seebeck Effect
  • 3.2.2.
  • Peltier Effect
  • 3.2.3.
  • Thomson Effect
  • 3.2.4.
  • Thomson (or Kelvin) Relationships
  • 3.3.
  • Thermoelement Couple (Thermocouple)
  • 1.3.1.
  • 3.4.
  • The Figure of Merit
  • 3.5.
  • Similar and Dissimilar Materials
  • 3.5.1.
  • Similar Materials
  • 3.5.2.
  • Dissimilar Materials
  • 3.6.
  • Thermoelectric Generator (TEG)
  • Energy, Heat, and Work
  • 3.6.1.
  • Similar and Dissimilar Materials
  • 3.6.1.1.
  • Similar Materials
  • 3.6.1.2.
  • Dissimilar Materials
  • 3.6.2.
  • Conversion Efficiency and Current
  • 3.6.3.
  • Maximum Conversion Efficiency
  • 1.3.2.
  • 3.6.4.
  • Maximum Power Efficiency
  • 3.6.5.
  • Maximum Performance Parameters
  • 3.6.6.
  • Multicouple Modules
  • 3.7.
  • Thermoelectric Coolers (TEC)
  • 3.7.1.
  • Similar and Dissimilar Materials
  • The First Law of Thermodynamics
  • 3.7.1.1.
  • Similar Materials
  • 3.7.1.2.
  • Dissimilar Materials
  • 3.7.2.
  • The Coefficient of Performance
  • 3.7.3.
  • Optimum Current for the Maximum Cooling Rate
  • 3.7.4.
  • Maximum Performance Parameters
  • 1.3.3.
  • 3.7.5.
  • Optimum Current for the Maximum COP
  • 3.7.6.
  • Generalized Charts
  • 3.7.7.
  • Optimum Geometry for the Maximum Cooling in Similar Materials
  • 3.7.8.
  • Thermoelectric Modules
  • 3.7.9.
  • Commercial TEC
  • Heat Engines, Refrigerators, and Heat Pumps
  • 3.7.10.
  • Multistage Modules
  • 3.7.10.1.
  • Commercial Multistage Peltier Modules
  • 3.7.11.
  • Design Options
  • 3.8.
  • Applications
  • 3.8.1.
  • Thermoelectric Generators
  • 1.3.4.
  • 3.8.2.
  • Thermoelectric Coolers
  • 3.9.
  • Design Example
  • 3.9.1.
  • Design Concept
  • 3.9.2.
  • Design of Internal and External Heat Sinks
  • 3.9.3.
  • Design of Thermoelectric Cooler (TEC)
  • The Second Law of Thermodynamics
  • 3.9.4.
  • Finding the Exact Solution for Tc and Th
  • 3.9.5.
  • Performance Curves for Thermoelectric Air Cooler
  • 3.10.
  • Thermoelectric Module Design
  • 3.10.1.
  • Thermal and Electrical Contact Resistances for TEG
  • 3.10.2.
  • Thermal and Electrical Contact Resistances for TEC
  • 1.3.5.
  • 3.11.
  • Design Example of TEC Module
  • 3.11.1.
  • Design Concept
  • 3.11.2.
  • Summary of Design of a TEC Module
  • References
  • Problems
  • 4.
  • Heat Pipes
  • Machine generated contents note:
  • Carnot Cycle
  • 4.1.
  • Operation of Heat Pipe
  • 4.2.
  • Surface Tension
  • 4.3.
  • Heat Transfer Limitations
  • 4.3.1.
  • Capillary Limitation
  • 4.3.1.1.
  • Maximum Capillary Pressure Difference
  • 1.4.
  • 4.3.1.2.
  • Vapor Pressure Drop
  • 4.3.1.3.
  • Liquid Pressure Drop
  • 4.3.1.4.
  • Normal Hydrostatic Pressure Drop
  • 4.3.1.5.
  • Axial Hydrostatic Pressure Drop
  • 4.3.2.
  • Approximation for Capillary Pressure Difference
  • Heat Transfer
  • 4.3.3.
  • Sonic Limitation
  • 4.3.4.
  • Entrainment Limitation
  • 4.3.5.
  • Boiling Limitation
  • 4.3.6.
  • Viscous Limitation
  • 4.4.
  • Heat Pipe Thermal Resistance
  • 1.4.1.
  • 4.4.1.
  • Contact Resistance
  • 4.5.
  • Variable Conductance Heat Pipes (VCHP)
  • 4.5.1.
  • Gas-Loaded Heat Pipes
  • 4.5.2.
  • Clayepyron-Clausius Equation
  • 4.5.3.
  • Applications
  • Introduction
  • 4.6.
  • Loop Heat Pipes
  • 4.7.
  • Micro Heat Pipes
  • 4.7.1.
  • Steady-State Models
  • 4.7.1.1.
  • Conventional Model
  • 4.7.1.2.
  • Cotter's Model
  • 1.4.2.
  • 4.8.
  • Working Fluid
  • 4.8.1.
  • Figure of Merit
  • 4.8.2.
  • Compatibility
  • 4.9.
  • Wick Structures
  • 4.10.
  • Design Example
  • Conduction
  • 4.10.1.
  • Selection of Material and Working Fluid
  • 4.10.2.
  • Working Fluid Properties
  • 4.10.3.
  • Estimation of Vapor Space Radius
  • 4.10.4.
  • Estimation of Operating Limits
  • 4.10.4.1.
  • Capillary Limits
  • 1.4.3.
  • 4.10.4.2.
  • Sonic Limits
  • 4.10.4.3.
  • Entrainment Limits
  • 4.10.4.4.
  • Boiling Limits
  • 4.10.5.
  • Wall Thickness
  • 4.10.6.
  • Wick Selection
  • Convection
  • 4.10.7.
  • Maximum Arterial Depth
  • 4.10.8.
  • Design of Arterial Wick
  • 4.10.9.
  • Capillary Limitation
  • 4.10.9.1.
  • Liquid Pressure Drop in the Arterics
  • 4.10.9.2.
  • Liquid Pressure Drop in the Circumferential Wick
  • 1.4.3.1.
  • 4.10.9.3.
  • Vapor Pressure Drop in the Vapor Space
  • 4.10.10.
  • Performance Map
  • 4.10.11.
  • Check the Temperature Drop
  • References
  • Problems
  • 5.
  • Compact Heat Exchangers
  • 1.
  • Parallel Flow on an Isothermal Plate
  • 5.1.
  • Introduction
  • 5.2.
  • Fundamentals of Heat Exchangers
  • 5.2.1.
  • Counterflow and Parallel Flows
  • 5.2.2.
  • Overall Heat Transfer Coefficient
  • 5.2.3.
  • Log Mean Temperature Difference (LMTD)
  • 1.4.3.2.
  • 5.2.4.
  • Flow Properties
  • 5.2.5.
  • Nusselt Numbers
  • 5.2.6.
  • Effectiveness---NTU (ε-NTU) Method
  • 5.2.6.1.
  • Parallel Flow
  • 5.2.6.2.
  • Counterflow
  • A Cylinder in Cross Flow
  • 5.2.6.3.
  • Crossflow
  • 5.2.7.
  • Heat Exchanger Pressure Drop
  • 5.2.8.
  • Fouling Resistances (Fouling Factors)
  • 5.2.9.
  • Overall Surface (Fin) Efficiency
  • 5.2.10.
  • Reasonable Velocities of Various Fluids in Pipe Flow
  • 1.4.3.3.
  • 5.3.
  • Double-Pipe Heat Exchangers
  • 5.4.
  • Shell-and-Tube Heat Exchangers
  • 5.4.1.
  • Baffles
  • 5.4.2.
  • Multiple Passes
  • 5.4.3.
  • Dimensions of Shell-and-Tube Heat Exchanger
  • Flow in Ducts
  • 5.4.4.
  • Shell-side Tube Layout
  • 5.5.
  • Plate Heat Exchangers (PHE)
  • 5.5.1.
  • Flow Pass Arrangements
  • 5.5.2.
  • Geometric Properties
  • 5.5.3.
  • Friction Factor
  • 1.4.3.4.
  • 5.5.4.
  • Nusselt Number
  • 5.5.5.
  • Pressure Drops
  • 5.6.
  • Pressure Drops in Compact Heat Exchangers
  • 5.6.1.
  • Fundamentals of Core Pressure Drop
  • 5.6.2.
  • Core Entrance and Exit Pressure Drops
  • Free Convection
  • 5.6.3.
  • Contraction and Expansion Loss Coefficients
  • 5.6.3.1.
  • Circular-Tube Core
  • 5.6.3.2.
  • Square-Tube Core
  • 5.6.3.3.
  • Flat-Tube Core
  • 5.6.3.4.
  • Triangular-Tube Core
  • 1.4.4.
  • 5.7.
  • Finned-Tube Heat Exchangers
  • 5.7.1.
  • Geometrical Characteristics
  • 5.7.2.
  • Flow Properties
  • 5.7.3.
  • Thermal Properties
  • 5.7.4.
  • Correlations for Circular Finned-Tube Geometry
  • Radiation
  • 5.7.5.
  • Pressure Drop
  • 5.7.6.
  • Correlations for Louvered Plate-Fin Flat-Tube Geometry
  • 5.8.
  • Plate-Fin Heat Exchangers
  • 5.8.1.
  • Geometric Characteristics
  • 5.8.2.
  • Correlations for Offset Strip Fin (OSF) Geometry
  • 1.4.4.1.
  • 5.9.
  • Louver-Fin-Type Flat-Tube Plate-Fin Heat Exchangers
  • 5.9.1.
  • Geometric Characteristics
  • 5.9.2.
  • Correlations for Louver Fin Geometry
  • References
  • Problems
  • 6.
  • Solar Cells
  • Introduction
  • Thermal Radiation
  • 6.1.
  • Introduction
  • 6.1.1.
  • Operation of Solar Cells
  • 6.1.2.
  • Solar Cells and Technology
  • 6.1.3.
  • Solar Irradiance
  • 6.1.4.
  • Air Mass
  • 1.4.4.2.
  • 6.1.5.
  • Nature of Light
  • 6.2.
  • Quantum Mechanics
  • 6.2.1.
  • Atomic Structure
  • 6.2.2.
  • Bohr's Model
  • 6.2.3.
  • Line Spectra
  • View Factor
  • 6.2.4.
  • De Broglie Wave
  • 6.2.5.
  • Heisenberg Uncertainty Principle
  • 6.2.6.
  • Schrodinger Equation
  • 6.2.7.
  • A Particle in a 1-D Box
  • 6.2.8.
  • Quantum Numbers
  • 1.4.4.3.
  • 6.2.9.
  • Electron Configurations
  • 6.2.10.
  • Van der Waals Forces
  • 6.2.11.
  • Covalent Bonding
  • 6.2.12.
  • Energy Band
  • 6.2.13.
  • Pseudo-Potential Well
  • Radiation Exchange between Diffuse-Gray Surfaces
  • 6.3.
  • Density of States
  • 6.3.1.
  • Number of States
  • 6.3.2.
  • Effective Mass
  • 6.4.
  • Equilibrium Intrinsic Carrier Concentration
  • 6.4.1.
  • Fermi Function
  • References
  • 6.4.2.
  • Nondegenerate Semiconductor
  • 6.4.3.
  • Equilibrium Electron and Hole Concentrations
  • 6.4.4.
  • Intrinsic Semiconductors
  • 6.4.5.
  • Intrinsic Carrier Concentration, ni
  • 6.4.6.
  • Intrinsic Fermi Energy
  • 2.
  • 6.4.7.
  • Alternative Expression for n0 and p0
  • 6.5.
  • Extrinsic Semiconductors in Thermal Equilibrium
  • 6.5.1.
  • Doping, Donors, and Acceptors
  • 6.5.2.
  • Extrinsic Carrier Concentration in Equilibrium
  • 6.5.3.
  • Built-in Voltage
  • Heat Sinks
  • 6.5.4.
  • Principle of Detailed Balance
  • 6.5.5.
  • Majority and Minority Carriers in Equilibrium
  • 6.6.
  • Generation and Recombination
  • 6.6.1.
  • Direct and Indirect Band Gap Semiconductors
  • 6.6.2.
  • Absorption Coefficient
  • 2.1.
  • 6.6.3.
  • Photogeneration
  • 6.7.
  • Recombination
  • 6.7.1.
  • Recombination Mechanisms
  • 6.7.2.
  • Band Energy Diagram under Nonequilibrium Conditions
  • 6.7.2.1.
  • Back Surface Field (BSF)
  • Longitudinal Fin of Rectangular Profile
  • 6.7.3.
  • Low-Level Injection
  • 6.7.3.1.
  • Low-Level Injection
  • 6.7.4.
  • Band-to-Band Recombination
  • 6.7.5.
  • Trap-Assisted (SRH) Recombination
  • 6.7.6.
  • Simplified Expression of the SRH Recombination Rate
  • 1.1.
  • 2.2.
  • 6.7.7.
  • Auger Recombination
  • 6.7.8.
  • Total Recombination Rate
  • 6.8.
  • Carrier Transport
  • 6.8.1.
  • Drift
  • 6.8.2.
  • Carrier Mobility
  • Heat Transfer from Fin
  • 6.8.3.
  • Diffusion
  • 6.8.4.
  • Total Current Densities
  • 6.8.5.
  • Einstein Relationship
  • 6.8.6.
  • Semiconductor Equations
  • 6.8.7.
  • Minority-Carrier Diffusion Equations
  • 2.3.
  • 6.8.8.
  • P---n Junction
  • 6.8.9.
  • Calculation of Depletion Width --
  • Fin Effectiveness
  • 2.4.
  • Fin Efficiency
  • 2.5.
  • Corrected Profile Length
  • 2.6.
  • Optimizations
  • Introduction
  • 2.6.1.
  • Constant Profile Area Ap
  • 2.6.2.
  • Constant Heat Transfer from a Fin
  • 2.6.3.
  • Constant Fin Volume or Mass
  • 2.7.
  • Multiple Fin Array I
  • 2.7.1.
  • Free (Natural) Convection Cooling
  • 1.2.
  • 2.7.1.1.
  • Small Spacing Channel
  • 2.7.1.2.
  • Large Spacing Channel
  • 2.7.1.3.
  • Optimum Fin Spacing
  • 2.7.2.
  • Forced Convection Cooling
  • 2.7.2.1.
  • Small Spacing Channel
  • Humans and Energy
  • 2.7.2.2.
  • Large Spacing Channel
  • 2.8.
  • Multiple Fin Array II
  • 2.8.1.
  • Natural (Free) Convection Cooling
  • 2.9.
  • Thermal Resistance and Overall Surface Efficiency
  • 2.10.
  • Fin Design with Thermal Radiation
  • 1.3.
  • 2.10.1.
  • Single Longitudinal Fin with Radiation
  • References
  • Problems
  • 3.
  • Thermoelectrics
  • 3.1.
  • Introduction
  • 3.2.
  • Thermoelectric Effect
  • Boundary Conditions
  • Problem Description for Tutorial I
  • E.1.
  • Tutorial I: Using Gambit and Fluent for Thermal Behavior of an Electrical Wire
  • E.1.1.
  • Creating Geometry in Gambit
  • E.2.
  • Calculations for Heat Generation
  • Appendix F
  • Tutorial II for 3-D
  • Problem Description for Tutorial II
  • 6.9.2.
  • F.1.
  • Tutorial II Double-Pipe Heat Exchanger: Using SolidWorks, Gambit, and Fluent
  • F.1.1.
  • Double-Pipe Heat Exchanger
  • F.1.2.
  • Construct Model in SolidWorks
  • F.1.3.
  • Meshing the Double Pipe Heat Exchanger in Gambit
  • F.1.4.
  • Analysis of Heat Exchanger in Fluent
  • Minority Carrier Lifetimes
  • Appendix G
  • Computational Work of Heat Pipe
  • G.1.
  • A Heat Pipe and Heat Sink
  • Appendix H
  • Computational Work of a Heat Sink
  • H.1.
  • Electronic Package Cooling
  • Appendix I
  • Tutorial for MathCAD
  • 6.9.3.
  • I.1.
  • Tutorial Problem for MathCAD
  • Minority Carrier Diffusion Lengths
  • 6.9.4.
  • Minority Carrier Diffusion Equation for Holes
  • 6.9.5.
  • Minority Carrier Diffusion Equation for Electrons
  • 6.10.
  • Contents note continued:
  • Characteristics of Solar Cells
  • 6.10.1.
  • Current Density
  • 6.10.2.
  • Current-Voltage Characteristics
  • 6.10.3.
  • Figures of Merit
  • 6.10.4.
  • Effect of Minority Electron Lifetime on Efficiency
  • 6.10.5.
  • 6.8.10.
  • Effect of Minority Hole Lifetime on Efficiency
  • 6.10.6.
  • Effect of Back Surface Recombination Velocity on Efficiency
  • 6.10.7.
  • Effect of Base Width on Efficiency
  • 6.10.8.
  • Effect of Emitter Width WN on Efficiency
  • 6.10.9.
  • Effect of Acceptor Concentration on Efficiency
  • 6.10.10.
  • Energy Band Diagram with a Reference Point
  • Effect of Donor Concentration on Efficiency
  • 6.10.11.
  • Band Gap Energy with Temperature
  • 6.10.12.
  • Effect of Temperature on Efficiency
  • 6.11.
  • Additional Topics
  • 6.11.1.
  • Parasitic Resistance Effects (Ohmic Losses)
  • 6.11.2.
  • 6.8.11.
  • Quantum Efficiency
  • 6.11.3.
  • Ideal Solar Cell Efficiency
  • 6.12.
  • Modeling
  • 6.12.1.
  • Modeling for a Silicon Solar Cell
  • 6.12.2.
  • Comparison of the Solar Cell Model with a Commercial Product
  • 6.13.
  • Quasi-Fermi Energy Levels
  • Design of a Solar Cell
  • 6.13.1.
  • Solar Cell Geometry with Surface Recombination Velocities
  • 6.13.2.
  • Donor and Acceptor Concentrations
  • 6.13.3.
  • Minority Carrier Diffusion Lifetimes
  • 6.13.4.
  • Grid Spacing
  • 6.13.5.
  • 6.9.
  • Anti-Reflection, Light Trapping and Passivation
  • References
  • Problems
  • Appendix A
  • Thermophysical Properties
  • Appendix B
  • Thermoelectrics
  • B.1.
  • Thermoelectric Effects
  • Seebeck Effect
  • Minority Carrier Transport
  • Peltier Effect
  • Thomson Effect
  • B.2.
  • Thomson (or Kelvin) Relationships
  • B.3.
  • Heat Balance Equation
  • B.4.
  • Figure of Merit and Optimum Geometry
  • References
  • Appendix C
  • 6.9.1.
  • Pipe Dimensions
  • Appendix D
  • Curve Fitting of Working Fluids
  • Curve Fit for Working Fluids Chosen
  • D.1.
  • Curve Fitting for Working Fluid Properties Chosen
  • D.1.1.
  • MathCad Format
  • Appendix E
  • Tutorial I for 2-D
Control code
ocn610832753
Dimensions
25 cm
Extent
xviii, 630 p.
Isbn
9780470496626
Isbn Type
(hardback)
Lccn
2010018381
Other physical details
ill.
Label
Thermal design : heat sinks, thermoelectrics, heat pipes, compact heat exchangers, and solar cells, HoSung Lee
Publication
Note
Includes index
Contents
  • Thermodynamics
  • 3.2.1.
  • Seebeck Effect
  • 3.2.2.
  • Peltier Effect
  • 3.2.3.
  • Thomson Effect
  • 3.2.4.
  • Thomson (or Kelvin) Relationships
  • 3.3.
  • Thermoelement Couple (Thermocouple)
  • 1.3.1.
  • 3.4.
  • The Figure of Merit
  • 3.5.
  • Similar and Dissimilar Materials
  • 3.5.1.
  • Similar Materials
  • 3.5.2.
  • Dissimilar Materials
  • 3.6.
  • Thermoelectric Generator (TEG)
  • Energy, Heat, and Work
  • 3.6.1.
  • Similar and Dissimilar Materials
  • 3.6.1.1.
  • Similar Materials
  • 3.6.1.2.
  • Dissimilar Materials
  • 3.6.2.
  • Conversion Efficiency and Current
  • 3.6.3.
  • Maximum Conversion Efficiency
  • 1.3.2.
  • 3.6.4.
  • Maximum Power Efficiency
  • 3.6.5.
  • Maximum Performance Parameters
  • 3.6.6.
  • Multicouple Modules
  • 3.7.
  • Thermoelectric Coolers (TEC)
  • 3.7.1.
  • Similar and Dissimilar Materials
  • The First Law of Thermodynamics
  • 3.7.1.1.
  • Similar Materials
  • 3.7.1.2.
  • Dissimilar Materials
  • 3.7.2.
  • The Coefficient of Performance
  • 3.7.3.
  • Optimum Current for the Maximum Cooling Rate
  • 3.7.4.
  • Maximum Performance Parameters
  • 1.3.3.
  • 3.7.5.
  • Optimum Current for the Maximum COP
  • 3.7.6.
  • Generalized Charts
  • 3.7.7.
  • Optimum Geometry for the Maximum Cooling in Similar Materials
  • 3.7.8.
  • Thermoelectric Modules
  • 3.7.9.
  • Commercial TEC
  • Heat Engines, Refrigerators, and Heat Pumps
  • 3.7.10.
  • Multistage Modules
  • 3.7.10.1.
  • Commercial Multistage Peltier Modules
  • 3.7.11.
  • Design Options
  • 3.8.
  • Applications
  • 3.8.1.
  • Thermoelectric Generators
  • 1.3.4.
  • 3.8.2.
  • Thermoelectric Coolers
  • 3.9.
  • Design Example
  • 3.9.1.
  • Design Concept
  • 3.9.2.
  • Design of Internal and External Heat Sinks
  • 3.9.3.
  • Design of Thermoelectric Cooler (TEC)
  • The Second Law of Thermodynamics
  • 3.9.4.
  • Finding the Exact Solution for Tc and Th
  • 3.9.5.
  • Performance Curves for Thermoelectric Air Cooler
  • 3.10.
  • Thermoelectric Module Design
  • 3.10.1.
  • Thermal and Electrical Contact Resistances for TEG
  • 3.10.2.
  • Thermal and Electrical Contact Resistances for TEC
  • 1.3.5.
  • 3.11.
  • Design Example of TEC Module
  • 3.11.1.
  • Design Concept
  • 3.11.2.
  • Summary of Design of a TEC Module
  • References
  • Problems
  • 4.
  • Heat Pipes
  • Machine generated contents note:
  • Carnot Cycle
  • 4.1.
  • Operation of Heat Pipe
  • 4.2.
  • Surface Tension
  • 4.3.
  • Heat Transfer Limitations
  • 4.3.1.
  • Capillary Limitation
  • 4.3.1.1.
  • Maximum Capillary Pressure Difference
  • 1.4.
  • 4.3.1.2.
  • Vapor Pressure Drop
  • 4.3.1.3.
  • Liquid Pressure Drop
  • 4.3.1.4.
  • Normal Hydrostatic Pressure Drop
  • 4.3.1.5.
  • Axial Hydrostatic Pressure Drop
  • 4.3.2.
  • Approximation for Capillary Pressure Difference
  • Heat Transfer
  • 4.3.3.
  • Sonic Limitation
  • 4.3.4.
  • Entrainment Limitation
  • 4.3.5.
  • Boiling Limitation
  • 4.3.6.
  • Viscous Limitation
  • 4.4.
  • Heat Pipe Thermal Resistance
  • 1.4.1.
  • 4.4.1.
  • Contact Resistance
  • 4.5.
  • Variable Conductance Heat Pipes (VCHP)
  • 4.5.1.
  • Gas-Loaded Heat Pipes
  • 4.5.2.
  • Clayepyron-Clausius Equation
  • 4.5.3.
  • Applications
  • Introduction
  • 4.6.
  • Loop Heat Pipes
  • 4.7.
  • Micro Heat Pipes
  • 4.7.1.
  • Steady-State Models
  • 4.7.1.1.
  • Conventional Model
  • 4.7.1.2.
  • Cotter's Model
  • 1.4.2.
  • 4.8.
  • Working Fluid
  • 4.8.1.
  • Figure of Merit
  • 4.8.2.
  • Compatibility
  • 4.9.
  • Wick Structures
  • 4.10.
  • Design Example
  • Conduction
  • 4.10.1.
  • Selection of Material and Working Fluid
  • 4.10.2.
  • Working Fluid Properties
  • 4.10.3.
  • Estimation of Vapor Space Radius
  • 4.10.4.
  • Estimation of Operating Limits
  • 4.10.4.1.
  • Capillary Limits
  • 1.4.3.
  • 4.10.4.2.
  • Sonic Limits
  • 4.10.4.3.
  • Entrainment Limits
  • 4.10.4.4.
  • Boiling Limits
  • 4.10.5.
  • Wall Thickness
  • 4.10.6.
  • Wick Selection
  • Convection
  • 4.10.7.
  • Maximum Arterial Depth
  • 4.10.8.
  • Design of Arterial Wick
  • 4.10.9.
  • Capillary Limitation
  • 4.10.9.1.
  • Liquid Pressure Drop in the Arterics
  • 4.10.9.2.
  • Liquid Pressure Drop in the Circumferential Wick
  • 1.4.3.1.
  • 4.10.9.3.
  • Vapor Pressure Drop in the Vapor Space
  • 4.10.10.
  • Performance Map
  • 4.10.11.
  • Check the Temperature Drop
  • References
  • Problems
  • 5.
  • Compact Heat Exchangers
  • 1.
  • Parallel Flow on an Isothermal Plate
  • 5.1.
  • Introduction
  • 5.2.
  • Fundamentals of Heat Exchangers
  • 5.2.1.
  • Counterflow and Parallel Flows
  • 5.2.2.
  • Overall Heat Transfer Coefficient
  • 5.2.3.
  • Log Mean Temperature Difference (LMTD)
  • 1.4.3.2.
  • 5.2.4.
  • Flow Properties
  • 5.2.5.
  • Nusselt Numbers
  • 5.2.6.
  • Effectiveness---NTU (ε-NTU) Method
  • 5.2.6.1.
  • Parallel Flow
  • 5.2.6.2.
  • Counterflow
  • A Cylinder in Cross Flow
  • 5.2.6.3.
  • Crossflow
  • 5.2.7.
  • Heat Exchanger Pressure Drop
  • 5.2.8.
  • Fouling Resistances (Fouling Factors)
  • 5.2.9.
  • Overall Surface (Fin) Efficiency
  • 5.2.10.
  • Reasonable Velocities of Various Fluids in Pipe Flow
  • 1.4.3.3.
  • 5.3.
  • Double-Pipe Heat Exchangers
  • 5.4.
  • Shell-and-Tube Heat Exchangers
  • 5.4.1.
  • Baffles
  • 5.4.2.
  • Multiple Passes
  • 5.4.3.
  • Dimensions of Shell-and-Tube Heat Exchanger
  • Flow in Ducts
  • 5.4.4.
  • Shell-side Tube Layout
  • 5.5.
  • Plate Heat Exchangers (PHE)
  • 5.5.1.
  • Flow Pass Arrangements
  • 5.5.2.
  • Geometric Properties
  • 5.5.3.
  • Friction Factor
  • 1.4.3.4.
  • 5.5.4.
  • Nusselt Number
  • 5.5.5.
  • Pressure Drops
  • 5.6.
  • Pressure Drops in Compact Heat Exchangers
  • 5.6.1.
  • Fundamentals of Core Pressure Drop
  • 5.6.2.
  • Core Entrance and Exit Pressure Drops
  • Free Convection
  • 5.6.3.
  • Contraction and Expansion Loss Coefficients
  • 5.6.3.1.
  • Circular-Tube Core
  • 5.6.3.2.
  • Square-Tube Core
  • 5.6.3.3.
  • Flat-Tube Core
  • 5.6.3.4.
  • Triangular-Tube Core
  • 1.4.4.
  • 5.7.
  • Finned-Tube Heat Exchangers
  • 5.7.1.
  • Geometrical Characteristics
  • 5.7.2.
  • Flow Properties
  • 5.7.3.
  • Thermal Properties
  • 5.7.4.
  • Correlations for Circular Finned-Tube Geometry
  • Radiation
  • 5.7.5.
  • Pressure Drop
  • 5.7.6.
  • Correlations for Louvered Plate-Fin Flat-Tube Geometry
  • 5.8.
  • Plate-Fin Heat Exchangers
  • 5.8.1.
  • Geometric Characteristics
  • 5.8.2.
  • Correlations for Offset Strip Fin (OSF) Geometry
  • 1.4.4.1.
  • 5.9.
  • Louver-Fin-Type Flat-Tube Plate-Fin Heat Exchangers
  • 5.9.1.
  • Geometric Characteristics
  • 5.9.2.
  • Correlations for Louver Fin Geometry
  • References
  • Problems
  • 6.
  • Solar Cells
  • Introduction
  • Thermal Radiation
  • 6.1.
  • Introduction
  • 6.1.1.
  • Operation of Solar Cells
  • 6.1.2.
  • Solar Cells and Technology
  • 6.1.3.
  • Solar Irradiance
  • 6.1.4.
  • Air Mass
  • 1.4.4.2.
  • 6.1.5.
  • Nature of Light
  • 6.2.
  • Quantum Mechanics
  • 6.2.1.
  • Atomic Structure
  • 6.2.2.
  • Bohr's Model
  • 6.2.3.
  • Line Spectra
  • View Factor
  • 6.2.4.
  • De Broglie Wave
  • 6.2.5.
  • Heisenberg Uncertainty Principle
  • 6.2.6.
  • Schrodinger Equation
  • 6.2.7.
  • A Particle in a 1-D Box
  • 6.2.8.
  • Quantum Numbers
  • 1.4.4.3.
  • 6.2.9.
  • Electron Configurations
  • 6.2.10.
  • Van der Waals Forces
  • 6.2.11.
  • Covalent Bonding
  • 6.2.12.
  • Energy Band
  • 6.2.13.
  • Pseudo-Potential Well
  • Radiation Exchange between Diffuse-Gray Surfaces
  • 6.3.
  • Density of States
  • 6.3.1.
  • Number of States
  • 6.3.2.
  • Effective Mass
  • 6.4.
  • Equilibrium Intrinsic Carrier Concentration
  • 6.4.1.
  • Fermi Function
  • References
  • 6.4.2.
  • Nondegenerate Semiconductor
  • 6.4.3.
  • Equilibrium Electron and Hole Concentrations
  • 6.4.4.
  • Intrinsic Semiconductors
  • 6.4.5.
  • Intrinsic Carrier Concentration, ni
  • 6.4.6.
  • Intrinsic Fermi Energy
  • 2.
  • 6.4.7.
  • Alternative Expression for n0 and p0
  • 6.5.
  • Extrinsic Semiconductors in Thermal Equilibrium
  • 6.5.1.
  • Doping, Donors, and Acceptors
  • 6.5.2.
  • Extrinsic Carrier Concentration in Equilibrium
  • 6.5.3.
  • Built-in Voltage
  • Heat Sinks
  • 6.5.4.
  • Principle of Detailed Balance
  • 6.5.5.
  • Majority and Minority Carriers in Equilibrium
  • 6.6.
  • Generation and Recombination
  • 6.6.1.
  • Direct and Indirect Band Gap Semiconductors
  • 6.6.2.
  • Absorption Coefficient
  • 2.1.
  • 6.6.3.
  • Photogeneration
  • 6.7.
  • Recombination
  • 6.7.1.
  • Recombination Mechanisms
  • 6.7.2.
  • Band Energy Diagram under Nonequilibrium Conditions
  • 6.7.2.1.
  • Back Surface Field (BSF)
  • Longitudinal Fin of Rectangular Profile
  • 6.7.3.
  • Low-Level Injection
  • 6.7.3.1.
  • Low-Level Injection
  • 6.7.4.
  • Band-to-Band Recombination
  • 6.7.5.
  • Trap-Assisted (SRH) Recombination
  • 6.7.6.
  • Simplified Expression of the SRH Recombination Rate
  • 1.1.
  • 2.2.
  • 6.7.7.
  • Auger Recombination
  • 6.7.8.
  • Total Recombination Rate
  • 6.8.
  • Carrier Transport
  • 6.8.1.
  • Drift
  • 6.8.2.
  • Carrier Mobility
  • Heat Transfer from Fin
  • 6.8.3.
  • Diffusion
  • 6.8.4.
  • Total Current Densities
  • 6.8.5.
  • Einstein Relationship
  • 6.8.6.
  • Semiconductor Equations
  • 6.8.7.
  • Minority-Carrier Diffusion Equations
  • 2.3.
  • 6.8.8.
  • P---n Junction
  • 6.8.9.
  • Calculation of Depletion Width --
  • Fin Effectiveness
  • 2.4.
  • Fin Efficiency
  • 2.5.
  • Corrected Profile Length
  • 2.6.
  • Optimizations
  • Introduction
  • 2.6.1.
  • Constant Profile Area Ap
  • 2.6.2.
  • Constant Heat Transfer from a Fin
  • 2.6.3.
  • Constant Fin Volume or Mass
  • 2.7.
  • Multiple Fin Array I
  • 2.7.1.
  • Free (Natural) Convection Cooling
  • 1.2.
  • 2.7.1.1.
  • Small Spacing Channel
  • 2.7.1.2.
  • Large Spacing Channel
  • 2.7.1.3.
  • Optimum Fin Spacing
  • 2.7.2.
  • Forced Convection Cooling
  • 2.7.2.1.
  • Small Spacing Channel
  • Humans and Energy
  • 2.7.2.2.
  • Large Spacing Channel
  • 2.8.
  • Multiple Fin Array II
  • 2.8.1.
  • Natural (Free) Convection Cooling
  • 2.9.
  • Thermal Resistance and Overall Surface Efficiency
  • 2.10.
  • Fin Design with Thermal Radiation
  • 1.3.
  • 2.10.1.
  • Single Longitudinal Fin with Radiation
  • References
  • Problems
  • 3.
  • Thermoelectrics
  • 3.1.
  • Introduction
  • 3.2.
  • Thermoelectric Effect
  • Boundary Conditions
  • Problem Description for Tutorial I
  • E.1.
  • Tutorial I: Using Gambit and Fluent for Thermal Behavior of an Electrical Wire
  • E.1.1.
  • Creating Geometry in Gambit
  • E.2.
  • Calculations for Heat Generation
  • Appendix F
  • Tutorial II for 3-D
  • Problem Description for Tutorial II
  • 6.9.2.
  • F.1.
  • Tutorial II Double-Pipe Heat Exchanger: Using SolidWorks, Gambit, and Fluent
  • F.1.1.
  • Double-Pipe Heat Exchanger
  • F.1.2.
  • Construct Model in SolidWorks
  • F.1.3.
  • Meshing the Double Pipe Heat Exchanger in Gambit
  • F.1.4.
  • Analysis of Heat Exchanger in Fluent
  • Minority Carrier Lifetimes
  • Appendix G
  • Computational Work of Heat Pipe
  • G.1.
  • A Heat Pipe and Heat Sink
  • Appendix H
  • Computational Work of a Heat Sink
  • H.1.
  • Electronic Package Cooling
  • Appendix I
  • Tutorial for MathCAD
  • 6.9.3.
  • I.1.
  • Tutorial Problem for MathCAD
  • Minority Carrier Diffusion Lengths
  • 6.9.4.
  • Minority Carrier Diffusion Equation for Holes
  • 6.9.5.
  • Minority Carrier Diffusion Equation for Electrons
  • 6.10.
  • Contents note continued:
  • Characteristics of Solar Cells
  • 6.10.1.
  • Current Density
  • 6.10.2.
  • Current-Voltage Characteristics
  • 6.10.3.
  • Figures of Merit
  • 6.10.4.
  • Effect of Minority Electron Lifetime on Efficiency
  • 6.10.5.
  • 6.8.10.
  • Effect of Minority Hole Lifetime on Efficiency
  • 6.10.6.
  • Effect of Back Surface Recombination Velocity on Efficiency
  • 6.10.7.
  • Effect of Base Width on Efficiency
  • 6.10.8.
  • Effect of Emitter Width WN on Efficiency
  • 6.10.9.
  • Effect of Acceptor Concentration on Efficiency
  • 6.10.10.
  • Energy Band Diagram with a Reference Point
  • Effect of Donor Concentration on Efficiency
  • 6.10.11.
  • Band Gap Energy with Temperature
  • 6.10.12.
  • Effect of Temperature on Efficiency
  • 6.11.
  • Additional Topics
  • 6.11.1.
  • Parasitic Resistance Effects (Ohmic Losses)
  • 6.11.2.
  • 6.8.11.
  • Quantum Efficiency
  • 6.11.3.
  • Ideal Solar Cell Efficiency
  • 6.12.
  • Modeling
  • 6.12.1.
  • Modeling for a Silicon Solar Cell
  • 6.12.2.
  • Comparison of the Solar Cell Model with a Commercial Product
  • 6.13.
  • Quasi-Fermi Energy Levels
  • Design of a Solar Cell
  • 6.13.1.
  • Solar Cell Geometry with Surface Recombination Velocities
  • 6.13.2.
  • Donor and Acceptor Concentrations
  • 6.13.3.
  • Minority Carrier Diffusion Lifetimes
  • 6.13.4.
  • Grid Spacing
  • 6.13.5.
  • 6.9.
  • Anti-Reflection, Light Trapping and Passivation
  • References
  • Problems
  • Appendix A
  • Thermophysical Properties
  • Appendix B
  • Thermoelectrics
  • B.1.
  • Thermoelectric Effects
  • Seebeck Effect
  • Minority Carrier Transport
  • Peltier Effect
  • Thomson Effect
  • B.2.
  • Thomson (or Kelvin) Relationships
  • B.3.
  • Heat Balance Equation
  • B.4.
  • Figure of Merit and Optimum Geometry
  • References
  • Appendix C
  • 6.9.1.
  • Pipe Dimensions
  • Appendix D
  • Curve Fitting of Working Fluids
  • Curve Fit for Working Fluids Chosen
  • D.1.
  • Curve Fitting for Working Fluid Properties Chosen
  • D.1.1.
  • MathCad Format
  • Appendix E
  • Tutorial I for 2-D
Control code
ocn610832753
Dimensions
25 cm
Extent
xviii, 630 p.
Isbn
9780470496626
Isbn Type
(hardback)
Lccn
2010018381
Other physical details
ill.

Library Locations

    • ManawatÅ« LibraryBorrow it
      Tennent Drive, Palmerston North, Palmerston North, 4472, NZ
      -40.385340 175.617349
Processing Feedback ...