Coverart for item
The Resource Taking sudoku seriously : the math behind the world's most popular pencil puzzle, Jason Rosenhouse and Laura Taalman

Taking sudoku seriously : the math behind the world's most popular pencil puzzle, Jason Rosenhouse and Laura Taalman

Label
Taking sudoku seriously : the math behind the world's most popular pencil puzzle
Title
Taking sudoku seriously
Title remainder
the math behind the world's most popular pencil puzzle
Statement of responsibility
Jason Rosenhouse and Laura Taalman
Creator
Contributor
Subject
Language
eng
Cataloging source
DLC
http://library.link/vocab/creatorName
Rosenhouse, Jason
Illustrations
illustrations
Index
index present
Literary form
non fiction
Nature of contents
bibliography
http://library.link/vocab/relatedWorkOrContributorName
Taalman, Laura
http://library.link/vocab/subjectName
  • Sudoku
  • Mathematics
Label
Taking sudoku seriously : the math behind the world's most popular pencil puzzle, Jason Rosenhouse and Laura Taalman
Instantiates
Publication
Bibliography note
Includes bibliographical references and index
Color
multicolored
Contents
  • Cover; Contents; Preface; 1. Playing the Game: Mathematics as Applied Puzzle-Solving; 1.1 Mathematics and Puzzles; 1.2 Forced Cells; 1.3 Twins; 1.4 X-Wings; 1.5 Ariadne's Thread; 1.6 Are We Doing Math Yet?; 1.7 Triplets, Swordfish, and the Art of Generalization; 1.8 Starting Over Again; 2. Latin Squares: What Do Mathematicians Do?; 2.1 Do Latin Squares Exist?; 2.2 Constructing Latin Squares of Any Size; 2.3 Shifting and Divisibility; 2.4 Jumping in the River; 3. Greco-Latin Squares: The Problem of the Thirty-Six Officers; 3.1 Do Greco-Latin Squares Exist?
  • 3.2 Euler's Greco-Latin Square Conjecture3.3 Mutually Orthogonal Gerechte Designs; 3.4 Mutually Orthogonal Sudoku Squares; 3.5 Who Cares?; 4. Counting: It's Harder than It Looks; 4.1 How to Count; 4.2 Counting Shidoku Squares; 4.3 How Many Sudoku Squares Are There?; 4.4 Estimating the Number of Sudoku Squares; 4.5 From Two Million to Forty-Four; 4.6 Enter the Computer; 4.7 A Note on Problem-Solving; 5. Equivalence Classes: The Importance of Being Essentially Identical; 5.1 They Might as Well Be the Same; 5.2 Transformations Preserving Sudokuness; 5.3 Equivalent Shidoku Squares
  • 5.4 Why the Natural Approach Fails5.5 Groups; 5.6 Burnside's Lemma; 5.7 Bringing It Home; 6. Searching: The Art of Finding Needles in Haystacks; 6.1 The Sudoku Stork; 6.2 A Stork with GPS; 6.3 How to Search; 6.4 Searching for Eighteen-Clue Sudoku; 6.5 Measuring Difficulty; 6.6 Ease and Interest Are Inversely Correlated; 6.7 Sudoku with an Extra Something; 7. Graphs: Dots, Lines, and Sudoku; 7.1 A Physics Lesson; 7.2 Two Mathematical Examples; 7.3 Sudoku as a Problem in Graph Coloring; 7.4 The Four-Color Theorem; 7.5 Many Roads to Rome; 7.6 Book Embeddings
  • 8. Polynomials: We Finally Found a Use for Algebra8.1 Sums and Products; 8.2 The Perils of Generalization; 8.3 Complex Polynomials; 8.4 The Rise of Experimental Mathematics; 9. Extremes: Sudoku Pushed to Its Limits; 9.1 The Joys of Going to Extremes; 9.2 Maximal Numbers of Clues; 9.3 Three Amusing Extremes; 9.4 The Rock Star Problem; 9.5 Is There "Evidence" in Mathematics?; 9.6 Sudoku Is Math in the Small; 10. Epilogue: You Can Never Have Too Many Puzzles; 10.1 Extra Regions; 10.2 Adding Value; 10.3 Comparison Sudoku; 10.4 ... And Beyond; Solutions to Puzzles; Bibliography; Index; A; B; C; D; E
  • Fg; h; i; j; k; l; m; n; o; p; q; r; s; t; u; v; w; y; z
Control code
ocn774293834
Dimensions
unknown
Extent
1 online resource (xii, 214 pages)
Form of item
online
Isbn
9780199921089
Other physical details
illustrations
Specific material designation
remote
System control number
(OCoLC)774293834
Label
Taking sudoku seriously : the math behind the world's most popular pencil puzzle, Jason Rosenhouse and Laura Taalman
Publication
Bibliography note
Includes bibliographical references and index
Color
multicolored
Contents
  • Cover; Contents; Preface; 1. Playing the Game: Mathematics as Applied Puzzle-Solving; 1.1 Mathematics and Puzzles; 1.2 Forced Cells; 1.3 Twins; 1.4 X-Wings; 1.5 Ariadne's Thread; 1.6 Are We Doing Math Yet?; 1.7 Triplets, Swordfish, and the Art of Generalization; 1.8 Starting Over Again; 2. Latin Squares: What Do Mathematicians Do?; 2.1 Do Latin Squares Exist?; 2.2 Constructing Latin Squares of Any Size; 2.3 Shifting and Divisibility; 2.4 Jumping in the River; 3. Greco-Latin Squares: The Problem of the Thirty-Six Officers; 3.1 Do Greco-Latin Squares Exist?
  • 3.2 Euler's Greco-Latin Square Conjecture3.3 Mutually Orthogonal Gerechte Designs; 3.4 Mutually Orthogonal Sudoku Squares; 3.5 Who Cares?; 4. Counting: It's Harder than It Looks; 4.1 How to Count; 4.2 Counting Shidoku Squares; 4.3 How Many Sudoku Squares Are There?; 4.4 Estimating the Number of Sudoku Squares; 4.5 From Two Million to Forty-Four; 4.6 Enter the Computer; 4.7 A Note on Problem-Solving; 5. Equivalence Classes: The Importance of Being Essentially Identical; 5.1 They Might as Well Be the Same; 5.2 Transformations Preserving Sudokuness; 5.3 Equivalent Shidoku Squares
  • 5.4 Why the Natural Approach Fails5.5 Groups; 5.6 Burnside's Lemma; 5.7 Bringing It Home; 6. Searching: The Art of Finding Needles in Haystacks; 6.1 The Sudoku Stork; 6.2 A Stork with GPS; 6.3 How to Search; 6.4 Searching for Eighteen-Clue Sudoku; 6.5 Measuring Difficulty; 6.6 Ease and Interest Are Inversely Correlated; 6.7 Sudoku with an Extra Something; 7. Graphs: Dots, Lines, and Sudoku; 7.1 A Physics Lesson; 7.2 Two Mathematical Examples; 7.3 Sudoku as a Problem in Graph Coloring; 7.4 The Four-Color Theorem; 7.5 Many Roads to Rome; 7.6 Book Embeddings
  • 8. Polynomials: We Finally Found a Use for Algebra8.1 Sums and Products; 8.2 The Perils of Generalization; 8.3 Complex Polynomials; 8.4 The Rise of Experimental Mathematics; 9. Extremes: Sudoku Pushed to Its Limits; 9.1 The Joys of Going to Extremes; 9.2 Maximal Numbers of Clues; 9.3 Three Amusing Extremes; 9.4 The Rock Star Problem; 9.5 Is There "Evidence" in Mathematics?; 9.6 Sudoku Is Math in the Small; 10. Epilogue: You Can Never Have Too Many Puzzles; 10.1 Extra Regions; 10.2 Adding Value; 10.3 Comparison Sudoku; 10.4 ... And Beyond; Solutions to Puzzles; Bibliography; Index; A; B; C; D; E
  • Fg; h; i; j; k; l; m; n; o; p; q; r; s; t; u; v; w; y; z
Control code
ocn774293834
Dimensions
unknown
Extent
1 online resource (xii, 214 pages)
Form of item
online
Isbn
9780199921089
Other physical details
illustrations
Specific material designation
remote
System control number
(OCoLC)774293834

Library Locations

    • InternetBorrow it
      Albany, Auckland, 0632, NZ
Processing Feedback ...