The Resource Renormalization and 3manifolds which fiber over the circle, by Curtis T. McMullen
Renormalization and 3manifolds which fiber over the circle, by Curtis T. McMullen
Resource Information
The item Renormalization and 3manifolds which fiber over the circle, by Curtis T. McMullen represents a specific, individual, material embodiment of a distinct intellectual or artistic creation found in Massey University Library, University of New Zealand.This item is available to borrow from 1 library branch.
Resource Information
The item Renormalization and 3manifolds which fiber over the circle, by Curtis T. McMullen represents a specific, individual, material embodiment of a distinct intellectual or artistic creation found in Massey University Library, University of New Zealand.
This item is available to borrow from 1 library branch.
 Summary
 Many parallels between complex dynamics and hyperbolic geometry have emerged in the past decade. Building on work of Sullivan and Thurston, this book gives a unified treatment of the construction of fixedpoints for renormalization and the construction of hyperbolic 3 manifolds fibering over the circle. Both subjects are studied via geometric limits and rigidity. This approach shows open hyperbolic manifolds are inflexible, and yields quantitative counterparts to Mostow rigidity. In complex dynamics, it motivates the construction of towers of quadraticlike maps, and leads to a quan
 Language
 eng
 Extent
 1 online resource (264 pages)
 Contents

 Cover; Title; Copyright; Contents; 1 Introduction; 2 Rigidity of hyperbolic manifolds; 2.1 The Hausdorff topology; 2.2 Manifolds and geometric limits; 2.3 Rigidity; 2.4 Geometric inflexibility; 2.5 Deep points and differentiability; 2.6 Shallow sets; 3 Threemanifolds which fiber over the circle; 3.1 Structures on surfaces and 3manifolds; 3.2 Quasifuchsian groups; 3.3 The mapping class group; 3.4 Hyperbolic structures on mapping tori; 3.5 Asymptotic geometry; 3.6 Speed of algebraic convergence; 3.7 Example: torus bundles; 4 Quadratic maps and renormalization; 4.1 Topologies on domains
 4.2 Polynomials and polynomiallike maps4.3 The inner class; 4.4 Improving polynomiallike maps; 4.5 Fixed points of quadratic maps; 4.6 Renormalization; 4.7 Simple renormalization; 4.8 Infinite renormalization; 5 Towers; 5.1 Definition and basic properties; 5.2 Infinitely renormalizable towers; 5.3 Bounded combinatorics; 5.4 Robustness and inner rigidity; 5.5 Unbranched renormalizations; 6 Rigidity of towers; 6.1 Fine towers; 6.2 Expansion; 6.3 Julia sets fill the plane; 6.4 Proof of rigidity; 6.5 A tower is determined by its inner classes; 7 Fixed points of renormalization
 7.1 Framework for the construction of fixed points7.2 Convergence of renormalization; 7.3 Analytic continuation of the fixed point; 7.4 Real quadratic mappings; 8 Asymptotic structure in the Julia set; 8.1 Rigidity and the postcritical Cantor set; 8.2 Deep points of Julia sets; 8.3 Small Julia sets everywhere; 8.4 Generalized towers; 9 Geometric limits in dynamics; 9.1 Holomorphic relations; 9.2 Nonlinearity and rigidity; 9.3 Uniform twisting; 9.4 Quadratic maps and universality; 9.5 Speed of convergence of renormalization; 10 Conclusion; Appendix A. Quasiconformal maps and flows
 A.1 Conformal structures on vector spacesA. 2 Maps and vector fields; A.3 BMO and Zygmund class; A.4 Compactness and modulus of continuity; A.5 Unique integrability; Appendix B. Visual extension; B.1 Naturality, continuity and quasiconformality; B.2 Representation theory; B.3 The visual distortion; B.4 Extending quasiconformal isotopies; B.5 Almost isometries; B.6 Points of differentiability; B. 7 Example: stretching a geodesic; Bibliography; Index
 Isbn
 9781400865178
 Label
 Renormalization and 3manifolds which fiber over the circle
 Title
 Renormalization and 3manifolds which fiber over the circle
 Statement of responsibility
 by Curtis T. McMullen
 Language
 eng
 Summary
 Many parallels between complex dynamics and hyperbolic geometry have emerged in the past decade. Building on work of Sullivan and Thurston, this book gives a unified treatment of the construction of fixedpoints for renormalization and the construction of hyperbolic 3 manifolds fibering over the circle. Both subjects are studied via geometric limits and rigidity. This approach shows open hyperbolic manifolds are inflexible, and yields quantitative counterparts to Mostow rigidity. In complex dynamics, it motivates the construction of towers of quadraticlike maps, and leads to a quan
 http://library.link/vocab/creatorName
 McMullen, Curtis T.,
 Dewey number
 514/.3
 Illustrations
 illustrations
 Index
 index present
 Literary form
 non fiction
 Nature of contents

 dictionaries
 bibliography
 Series statement
 Annals of Mathematics Studies
 Series volume
 Number 142
 http://library.link/vocab/subjectName

 Threemanifolds (Topology)
 Differentiable dynamical systems
 Label
 Renormalization and 3manifolds which fiber over the circle, by Curtis T. McMullen
 Bibliography note
 Includes bibliographical references and index
 Color
 multicolored
 Contents

 Cover; Title; Copyright; Contents; 1 Introduction; 2 Rigidity of hyperbolic manifolds; 2.1 The Hausdorff topology; 2.2 Manifolds and geometric limits; 2.3 Rigidity; 2.4 Geometric inflexibility; 2.5 Deep points and differentiability; 2.6 Shallow sets; 3 Threemanifolds which fiber over the circle; 3.1 Structures on surfaces and 3manifolds; 3.2 Quasifuchsian groups; 3.3 The mapping class group; 3.4 Hyperbolic structures on mapping tori; 3.5 Asymptotic geometry; 3.6 Speed of algebraic convergence; 3.7 Example: torus bundles; 4 Quadratic maps and renormalization; 4.1 Topologies on domains
 4.2 Polynomials and polynomiallike maps4.3 The inner class; 4.4 Improving polynomiallike maps; 4.5 Fixed points of quadratic maps; 4.6 Renormalization; 4.7 Simple renormalization; 4.8 Infinite renormalization; 5 Towers; 5.1 Definition and basic properties; 5.2 Infinitely renormalizable towers; 5.3 Bounded combinatorics; 5.4 Robustness and inner rigidity; 5.5 Unbranched renormalizations; 6 Rigidity of towers; 6.1 Fine towers; 6.2 Expansion; 6.3 Julia sets fill the plane; 6.4 Proof of rigidity; 6.5 A tower is determined by its inner classes; 7 Fixed points of renormalization
 7.1 Framework for the construction of fixed points7.2 Convergence of renormalization; 7.3 Analytic continuation of the fixed point; 7.4 Real quadratic mappings; 8 Asymptotic structure in the Julia set; 8.1 Rigidity and the postcritical Cantor set; 8.2 Deep points of Julia sets; 8.3 Small Julia sets everywhere; 8.4 Generalized towers; 9 Geometric limits in dynamics; 9.1 Holomorphic relations; 9.2 Nonlinearity and rigidity; 9.3 Uniform twisting; 9.4 Quadratic maps and universality; 9.5 Speed of convergence of renormalization; 10 Conclusion; Appendix A. Quasiconformal maps and flows
 A.1 Conformal structures on vector spacesA. 2 Maps and vector fields; A.3 BMO and Zygmund class; A.4 Compactness and modulus of continuity; A.5 Unique integrability; Appendix B. Visual extension; B.1 Naturality, continuity and quasiconformality; B.2 Representation theory; B.3 The visual distortion; B.4 Extending quasiconformal isotopies; B.5 Almost isometries; B.6 Points of differentiability; B. 7 Example: stretching a geodesic; Bibliography; Index
 Control code
 ocn891400016
 Dimensions
 unknown
 Extent
 1 online resource (264 pages)
 Form of item
 online
 Isbn
 9781400865178
 Note
 eBooks on EBSCOhost
 Other physical details
 illustrations, tables
 Specific material designation
 remote
 System control number
 (OCoLC)891400016
 Label
 Renormalization and 3manifolds which fiber over the circle, by Curtis T. McMullen
 Bibliography note
 Includes bibliographical references and index
 Color
 multicolored
 Contents

 Cover; Title; Copyright; Contents; 1 Introduction; 2 Rigidity of hyperbolic manifolds; 2.1 The Hausdorff topology; 2.2 Manifolds and geometric limits; 2.3 Rigidity; 2.4 Geometric inflexibility; 2.5 Deep points and differentiability; 2.6 Shallow sets; 3 Threemanifolds which fiber over the circle; 3.1 Structures on surfaces and 3manifolds; 3.2 Quasifuchsian groups; 3.3 The mapping class group; 3.4 Hyperbolic structures on mapping tori; 3.5 Asymptotic geometry; 3.6 Speed of algebraic convergence; 3.7 Example: torus bundles; 4 Quadratic maps and renormalization; 4.1 Topologies on domains
 4.2 Polynomials and polynomiallike maps4.3 The inner class; 4.4 Improving polynomiallike maps; 4.5 Fixed points of quadratic maps; 4.6 Renormalization; 4.7 Simple renormalization; 4.8 Infinite renormalization; 5 Towers; 5.1 Definition and basic properties; 5.2 Infinitely renormalizable towers; 5.3 Bounded combinatorics; 5.4 Robustness and inner rigidity; 5.5 Unbranched renormalizations; 6 Rigidity of towers; 6.1 Fine towers; 6.2 Expansion; 6.3 Julia sets fill the plane; 6.4 Proof of rigidity; 6.5 A tower is determined by its inner classes; 7 Fixed points of renormalization
 7.1 Framework for the construction of fixed points7.2 Convergence of renormalization; 7.3 Analytic continuation of the fixed point; 7.4 Real quadratic mappings; 8 Asymptotic structure in the Julia set; 8.1 Rigidity and the postcritical Cantor set; 8.2 Deep points of Julia sets; 8.3 Small Julia sets everywhere; 8.4 Generalized towers; 9 Geometric limits in dynamics; 9.1 Holomorphic relations; 9.2 Nonlinearity and rigidity; 9.3 Uniform twisting; 9.4 Quadratic maps and universality; 9.5 Speed of convergence of renormalization; 10 Conclusion; Appendix A. Quasiconformal maps and flows
 A.1 Conformal structures on vector spacesA. 2 Maps and vector fields; A.3 BMO and Zygmund class; A.4 Compactness and modulus of continuity; A.5 Unique integrability; Appendix B. Visual extension; B.1 Naturality, continuity and quasiconformality; B.2 Representation theory; B.3 The visual distortion; B.4 Extending quasiconformal isotopies; B.5 Almost isometries; B.6 Points of differentiability; B. 7 Example: stretching a geodesic; Bibliography; Index
 Control code
 ocn891400016
 Dimensions
 unknown
 Extent
 1 online resource (264 pages)
 Form of item
 online
 Isbn
 9781400865178
 Note
 eBooks on EBSCOhost
 Other physical details
 illustrations, tables
 Specific material designation
 remote
 System control number
 (OCoLC)891400016
Library Links
Embed (Experimental)
Settings
Select options that apply then copy and paste the RDF/HTML data fragment to include in your application
Embed this data in a secure (HTTPS) page:
Layout options:
Include data citation:
<div class="citation" vocab="http://schema.org/"><i class="fa faexternallinksquare fafw"></i> Data from <span resource="http://link.massey.ac.nz/portal/Renormalizationand3manifoldswhichfiberover/th0jqr027LI/" typeof="Book http://bibfra.me/vocab/lite/Item"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.massey.ac.nz/portal/Renormalizationand3manifoldswhichfiberover/th0jqr027LI/">Renormalization and 3manifolds which fiber over the circle, by Curtis T. McMullen</a></span>  <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.massey.ac.nz/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.massey.ac.nz/">Massey University Library, University of New Zealand</a></span></span></span></span></div>
Note: Adjust the width and height settings defined in the RDF/HTML code fragment to best match your requirements
Preview
Cite Data  Experimental
Data Citation of the Item Renormalization and 3manifolds which fiber over the circle, by Curtis T. McMullen
Copy and paste the following RDF/HTML data fragment to cite this resource
<div class="citation" vocab="http://schema.org/"><i class="fa faexternallinksquare fafw"></i> Data from <span resource="http://link.massey.ac.nz/portal/Renormalizationand3manifoldswhichfiberover/th0jqr027LI/" typeof="Book http://bibfra.me/vocab/lite/Item"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.massey.ac.nz/portal/Renormalizationand3manifoldswhichfiberover/th0jqr027LI/">Renormalization and 3manifolds which fiber over the circle, by Curtis T. McMullen</a></span>  <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.massey.ac.nz/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.massey.ac.nz/">Massey University Library, University of New Zealand</a></span></span></span></span></div>