Coverart for item
The Resource Principles of laser spectroscopy and quantum optics, Paul R. Berman, Vladimir S. Malinovsky

Principles of laser spectroscopy and quantum optics, Paul R. Berman, Vladimir S. Malinovsky

Label
Principles of laser spectroscopy and quantum optics
Title
Principles of laser spectroscopy and quantum optics
Statement of responsibility
Paul R. Berman, Vladimir S. Malinovsky
Creator
Contributor
Subject
Language
eng
Cataloging source
DLC
http://library.link/vocab/creatorDate
1945-
http://library.link/vocab/creatorName
Berman, Paul R.
Illustrations
illustrations
Index
index present
Literary form
non fiction
Nature of contents
bibliography
http://library.link/vocab/relatedWorkOrContributorDate
1962-
http://library.link/vocab/relatedWorkOrContributorName
Malinovsky, Vladimir S.
http://library.link/vocab/subjectName
  • Quantum optics
  • Laser spectroscopy
Label
Principles of laser spectroscopy and quantum optics, Paul R. Berman, Vladimir S. Malinovsky
Instantiates
Publication
Bibliography note
Includes bibliographical references and index
Contents
  • 1. Preliminaries -- 1.1. Atoms and Fields -- 1.2. Important Parameters -- 1.3. Maxwell's Equations -- 1.4. Atom-Field Hamiltonian -- 1.5. Dirac Notation -- 1.6. Where do We Go from Here? -- 1.7. Appendix: Atom-Field Hamiltonian -- Problems -- References -- Bibliography -- 2. Two-Level Quantum Systems -- 2.1. Review of Quantum Mechanics -- 2.1.1. Time-Independent Problems -- 2.1.2. Time-Dependent Problems -- 2.2. Interaction Representation -- 2.3. Two-Level Atom -- 2.4. Rotating-Wave or Resonance Approximation -- 2.4.1. Analytic Solutions -- 2.5. Field Interaction Representation -- 2.6. Semiclassical Dressed States -- 2.6.1. Adiabatic Following -- 2.7. General Remarks on Solution of the Matrix Equation y(t) = A(t)y(t) -- 2.7.1. Perturbation Theory -- 2.7.2. Adiabatic Approximation -- 2.7.3. Magnus Approximation -- 2.8. Summary -- 2.9. Appendix A: Representations -- 2.9.1. Relationships between the Representations -- 2.10. Appendix B: Spin Half Quantum System in a Magnetic Field -- 2.10.1. Analytic Solutions---Magnetic Case -- Problems -- References -- Bibliography -- 3. Density Matrix for a Single Atom -- 3.1. Density Matrix -- 3.2. Interaction Representation -- 3.3. Field Interaction Representation -- 3.4. Semiclassical Dressed States -- 3.5. Bloch Vector -- 3.5.1. No Relaxation -- 3.5.2. Relaxation Included -- 3.6. Summary -- 3.7. Appendix A: Density Matrix Equations in the Rotating-Wave Approximation -- 3.7.1. Schrodinger Representation -- 3.7.2. Interaction Representation -- 3.7.3. Field Interaction Representation -- 3.7.4. Bloch Vector -- 3.7.5. Semiclassical Dressed-State Representation -- 3.8. Appendix B: Collision Model -- Problems -- References -- Bibliography -- 4. Applications of the Density Matrix Formalism -- 4.1. Density Matrix for an Ensemble -- 4.2. Absorption Coefficient---Stationary Atoms -- 4.3. Simple Inclusion of Atomic Motion -- 4.4. Rate Equations -- 4.5. Summary -- Problems -- References -- Bibliography -- 5. Density Matrix Equations: Atomic Center-of-Mass Motion, Elementary Atom Optics, and Laser Cooling -- 5.1. Introduction -- 5.2. Atom in a Single Plane-Wave Field -- 5.3. Force on an Atom -- 5.3.1. Plane Wave -- 5.3.2. Focused Plane Wave: Atom Trapping -- 5.3.3. Standing-Wave Field: Laser Cooling -- 5.4. Summary -- 5.5. Appendix: Quantization of the Center-of-Mass Motion -- 5.5.1. Coordinate Representation -- 5.5.2. Momentum Representation -- 5.5.3. Sum and Difference Representation -- 5.5.4. Wigner Representation -- Problems -- References -- Bibliography -- 6. Maxwel-Bloch Equations -- 6.1. Wave Equation -- 6.1.1. Pulse Propagation in a Linear Medium -- 6.2. Maxwell-Bloch Equations -- 6.2.1. Slowly Varying Amplitude and Phase Approximation (SVAPA) -- 6.3. Linear Absorption and Dispersion---Stationary Atoms -- 6.4. Linear Pulse Propagation -- 6.5. Other Problems with the Maxwell-Bloch Equations -- 6.6. Summary -- 6.7. Appendix: Slowly Varying Amplitude and Phase Approximation---Part II -- Problems -- Bibliography -- 7. Two-Level Atoms in Two or More Fields: Introduction to Saturation Spectroscopy -- 7.1. Two-Level Atoms and N Fields---Third-Order Perturbation Theory -- 7.1.1. Zeroth Order -- 7.1.2. First Order -- 7.1.3. Second Order -- 7.1.4. Third Order -- 7.2. N = 2: Saturation Spectroscopy for Stationary Atoms -- 7.3. N = 2: Saturation Spectroscopy for Moving Atoms in Counterpropagating Fields---Hole Burning -- 7.3.1. Hole Burning and Atomic Population Gratings -- 7.3.2. Probe Field Absorption -- 7.4. Saturation Spectroscopy in Inhomogeneously Broadened Solids -- 7.5. Summary -- 7.6. Appendix A: Saturation Spectroscopy---Stationary Atoms in One Strong and One Weak Field -- 7.7. Appendix B: Four-Wave Mixing -- Problems -- References -- Bibliography -- 8. Three-Level Atoms: Applications to Nonlinear Spectroscopy---Open Quantum Systems -- 8.1. Hamiltonian for Λ, V, and Cacade Systems -- 8.1.1. Cascade Configuration -- 8.1.2. V and Λ Configurations -- 8.1.3. All Configurations -- 8.2. Density Matrix Equations in the Field Interaction Representation -- 8.3. Steady-State Solutions---Nonlinear Spectroscopy -- 8.3.1. Stationary Atoms -- 8.3.2. Moving Atoms: Doppler Limit -- 8.4. Autler-Townes Splitting -- 8.5. Two-Photon Spectroscopy -- 8.6. Open versus Closed Quantum Systems -- 8.7. Summary -- Problems -- References -- Bibliography -- 9. Three-Level Λ Atoms: Dark States, Adiabatic Following, and Slow Light -- 9.1. Dark States -- 9.2. Adiabatic Following---Stimulated Raman Adiabatic Passage -- 9.3. Slow Light -- 9.4. Effective Two-State Problem for the Λ Configuration -- 9.5. Summary -- 9.6. Appendix: Force on an Atom in the Λ Configuration -- Problems -- References -- Bibliography -- 10. Coherent Transients -- 10.1. Coherent Transient Signals -- 10.2. Free Polarization Decay -- 10.2.1. Homogeneous Broadening -- 10.2.2. Inhomogeneous Broadening -- 10.3. Photon Echo -- 10.4. Stimulated Photon Echo -- 10.5. Optical Ramsey Fringes -- 10.6. Frequency Combs -- 10.7. Summary -- 10.8. Appendix A: Transfer Matrices in Coherent Transients -- 10.9. Appendix B: Optical Ramsey Fringes in Spatially Separated Fields -- Problems -- References -- Bibliography -- 11. Atom Optics and Atom Interferometry -- 11.1. Review of Kirchhoff-Fresnel Diffraction -- 11.1.1. Electromagnetic Diffraction -- 11.1.2. Quantum-Mechanical Diffraction -- 11.2. Atom Optics -- 11.2.1. Scattering by an Amplitude Grating -- 11.2.2. Scattering by Periodic Structures---Talbot Effect -- 11.2.3. Scattering by Phase Gratings---Atom Focusing -- 11.3. Atom Interferometry -- 11.3.1. Microfabricated Elements -- 11.3.2. Counterpropagating Optical Field Elements -- 11.4. Summary -- Problems -- References -- Bibliography -- 12. The Quantized, Free Radiation Field -- 12.1. Free-Field Quantization -- 12.2. Properties of the Vacuum Field -- 12.2.1. Single-Photon State -- 12.2.2. Single-Mode Number State -- 12.2.3. Quasiclassical or Coherent States -- 12.3. Quadrature Operators for the Field -- 12.3.1. Pure n State -- 12.3.2. Coherent State -- 12.4. Two-Photon Coherent States or Squeezed States -- 12.4.1. Calculation of UL(z) -- 12.5. Phase Operator -- 12.6. Summary -- 12.7. Appendix: Field Quantization -- 12.7.1. Reciprocal Space -- 12.7.2. Longitudinal and Transverse Vector Fields -- 12.7.3. Transverse Electromagnetic Field -- 12.7.4. Free Field -- Problems -- References -- Bibliography -- 13. Coherence Properties of the Electric Field -- 13.1. Coherence: Some General Concepts -- 13.1.1. Time versus Ensemble Averages -- 13.1.2. Classical Fields -- 13.1.3. Quantized Fields -- 13.2. Classical Fields: Correlation Functions -- 13.2.1. First-Order Correlation Function -- 13.2.2. Young's Fringes -- 13.2.3. Intensity Correlations---Second-Order Correlation Function -- 13.2.4. Hanbury Brown and Twiss Experiment -- 13.3. Quantized Fields: Density Matrix for the Field and Photon Optics -- 13.3.1. Coherent State -- 13.3.2. Thermal State -- 13.3.3. P(α) Distribution -- 13.3.4. Correlation Functions for the Field -- 13.4. Summary -- Problems -- References -- Bibliography -- 14. Photon Counting and Interferometry -- 14.1. Photodetection -- 14.1.1. Photodetection of Classical Fields -- 14.1.2. Photodetection of Quantized Fields -- 14.2. Michelson Interferometer -- 14.2.1. Classical Fields -- 14.2.2. Quantized Fields -- 14.3. Summary -- Problems -- References -- Bibliography -- 15. Atom---Quantized Field Interactions -- 15.1. Interaction Hamiltonian and Equations of Motion -- 15.1.1. Schrodinger Representation -- 15.1.2. Heisenberg Representation -- 15.1.3. Hamiltonian -- 15.1.4. Jaynes-Cummings Model -- 15.2. Dressed States -- 15.3. Generation of Coherent and Squeezed States -- 15.3.1. Coherent States -- 15.3.2. Squeezed States -- 15.4. Summary -- Problems -- References -- Bibliography -- 16. Spontaneous Decay -- 16.1. Spontaneous Decay Rate -- 16.2. Radiation Pattern and Repopulation of the Ground State -- 16.2.1. Radiation Pattern -- 16.2.2. Repopulation of the Ground State -- 16.3. Summary -- 16.4. Appendix A: Circular Polarization -- 16.5. Appendix B: Radiation Pattern -- 16.5.1. Unpolarized Initial State -- 16.5.2. z-Polarized Excitation -- 16.5.3. Other than z-Polarized Excitation -- 16.6. Appendix C: Quantum Trajectory Approach to Spontaneous Decay -- Problems -- References -- Bibliography -- 17. Optical Pumping and Optical Lattices -- 17.1. Optical Pumping -- 17.1.1. Traveling-Wave Fields -- 17.1.2. z-Polarized Excitation -- 17.1.3. Irreducible Tensor Basis -- 17.1.4. Standing-Wave and Multiple-Frequency Fields -- 17.2. Optical Lattice Potentials -- 17.3. Summary -- 17.4. Appendix: Irreducible Tensor Formalism -- 17.4.1. Coupled Tensors -- 17.4.2. Density Matrix Equations -- Problems -- References -- Bibliography -- 18. Sub-Doppler Laser Cooling -- 18.1. Cooling via Field Momenta Exchange and Differential Scattering -- 18.1.1. Counterpropagating Fields -- 18.2. Sisyphus Picture of the Friction Force for a G = 1/2 Ground State and Crossed-Polarized Fields -- 18.3. Coherent Population Trapping -- 18.4. Summary -- 18.5. Appendix: Fokker-Planck Approach for Obtaining the Friction Force and Diffusion Coefficients --
  • Contents note continued: 18.5.1. Fokker-Planck Equation -- 18.5.2. G = 1/2; lin Polarization -- 18.5.3. G = 1 to H = 2 Transition; σ+ --- σ_ Polarization -- 18.5.4. Equilibrium Energy -- Problems -- References -- Bibliography -- 19. Operator Approach to Atom-Field Interactions: Source-Field Equation -- 19.1. Single Atom -- 19.1.1. Single-Mode Field -- 19.1.2. General Problem---n Field Modes -- 19.2. N-Atom Systems -- 19.3. Source-Field Equation -- 19.4. Source-Field Approach: Examples -- 19.4.1. Average Field and Field Intensity in Spontaneous Emission -- 19.4.2. Frequency Beats in Emission: Quantum Beats -- 19.4.3. Four-Wave Mixing -- 19.4.4. Linear Absorption -- 19.5. Summary -- Problems -- References -- Bibliography -- 20. Light Scattering -- 20.1. General Considerations: Perturbation Theory -- 20.2. Mollow Triplet -- 20.2.1. Dressed-State Approach to Mollow Triplet -- 20.2.2. Source-Field Approach to Mollow Triplet -- 20.3. Second-Order Correlation Function for the Radiated Field -- 20.4. Scattering by a Single Atom in Weak Fields: G ≠ 0 -- 20.5. Summary -- Problems -- References -- Bibliography -- 21. Entanglement and Spin Squeezing -- 21.1. Entanglement by Absorption -- 21.2. Entanglement by Post-Selection---DLCZ Protocol -- 21.3. Spin Squeezing -- 21.3.1. General Considerations -- 21.3.2. Spin Squeezing Using a Coherent Cavity Field -- 21.4. Summary -- Problems -- References -- Bibliography
Control code
ocn587249002
Dimensions
27 cm
Extent
xvi, 519 p.
Isbn
9780691140568
Isbn Type
(hardback : alk. paper)
Lccn
2010014005
Other physical details
ill.
System control number
(OCoLC)587249002
Label
Principles of laser spectroscopy and quantum optics, Paul R. Berman, Vladimir S. Malinovsky
Publication
Bibliography note
Includes bibliographical references and index
Contents
  • 1. Preliminaries -- 1.1. Atoms and Fields -- 1.2. Important Parameters -- 1.3. Maxwell's Equations -- 1.4. Atom-Field Hamiltonian -- 1.5. Dirac Notation -- 1.6. Where do We Go from Here? -- 1.7. Appendix: Atom-Field Hamiltonian -- Problems -- References -- Bibliography -- 2. Two-Level Quantum Systems -- 2.1. Review of Quantum Mechanics -- 2.1.1. Time-Independent Problems -- 2.1.2. Time-Dependent Problems -- 2.2. Interaction Representation -- 2.3. Two-Level Atom -- 2.4. Rotating-Wave or Resonance Approximation -- 2.4.1. Analytic Solutions -- 2.5. Field Interaction Representation -- 2.6. Semiclassical Dressed States -- 2.6.1. Adiabatic Following -- 2.7. General Remarks on Solution of the Matrix Equation y(t) = A(t)y(t) -- 2.7.1. Perturbation Theory -- 2.7.2. Adiabatic Approximation -- 2.7.3. Magnus Approximation -- 2.8. Summary -- 2.9. Appendix A: Representations -- 2.9.1. Relationships between the Representations -- 2.10. Appendix B: Spin Half Quantum System in a Magnetic Field -- 2.10.1. Analytic Solutions---Magnetic Case -- Problems -- References -- Bibliography -- 3. Density Matrix for a Single Atom -- 3.1. Density Matrix -- 3.2. Interaction Representation -- 3.3. Field Interaction Representation -- 3.4. Semiclassical Dressed States -- 3.5. Bloch Vector -- 3.5.1. No Relaxation -- 3.5.2. Relaxation Included -- 3.6. Summary -- 3.7. Appendix A: Density Matrix Equations in the Rotating-Wave Approximation -- 3.7.1. Schrodinger Representation -- 3.7.2. Interaction Representation -- 3.7.3. Field Interaction Representation -- 3.7.4. Bloch Vector -- 3.7.5. Semiclassical Dressed-State Representation -- 3.8. Appendix B: Collision Model -- Problems -- References -- Bibliography -- 4. Applications of the Density Matrix Formalism -- 4.1. Density Matrix for an Ensemble -- 4.2. Absorption Coefficient---Stationary Atoms -- 4.3. Simple Inclusion of Atomic Motion -- 4.4. Rate Equations -- 4.5. Summary -- Problems -- References -- Bibliography -- 5. Density Matrix Equations: Atomic Center-of-Mass Motion, Elementary Atom Optics, and Laser Cooling -- 5.1. Introduction -- 5.2. Atom in a Single Plane-Wave Field -- 5.3. Force on an Atom -- 5.3.1. Plane Wave -- 5.3.2. Focused Plane Wave: Atom Trapping -- 5.3.3. Standing-Wave Field: Laser Cooling -- 5.4. Summary -- 5.5. Appendix: Quantization of the Center-of-Mass Motion -- 5.5.1. Coordinate Representation -- 5.5.2. Momentum Representation -- 5.5.3. Sum and Difference Representation -- 5.5.4. Wigner Representation -- Problems -- References -- Bibliography -- 6. Maxwel-Bloch Equations -- 6.1. Wave Equation -- 6.1.1. Pulse Propagation in a Linear Medium -- 6.2. Maxwell-Bloch Equations -- 6.2.1. Slowly Varying Amplitude and Phase Approximation (SVAPA) -- 6.3. Linear Absorption and Dispersion---Stationary Atoms -- 6.4. Linear Pulse Propagation -- 6.5. Other Problems with the Maxwell-Bloch Equations -- 6.6. Summary -- 6.7. Appendix: Slowly Varying Amplitude and Phase Approximation---Part II -- Problems -- Bibliography -- 7. Two-Level Atoms in Two or More Fields: Introduction to Saturation Spectroscopy -- 7.1. Two-Level Atoms and N Fields---Third-Order Perturbation Theory -- 7.1.1. Zeroth Order -- 7.1.2. First Order -- 7.1.3. Second Order -- 7.1.4. Third Order -- 7.2. N = 2: Saturation Spectroscopy for Stationary Atoms -- 7.3. N = 2: Saturation Spectroscopy for Moving Atoms in Counterpropagating Fields---Hole Burning -- 7.3.1. Hole Burning and Atomic Population Gratings -- 7.3.2. Probe Field Absorption -- 7.4. Saturation Spectroscopy in Inhomogeneously Broadened Solids -- 7.5. Summary -- 7.6. Appendix A: Saturation Spectroscopy---Stationary Atoms in One Strong and One Weak Field -- 7.7. Appendix B: Four-Wave Mixing -- Problems -- References -- Bibliography -- 8. Three-Level Atoms: Applications to Nonlinear Spectroscopy---Open Quantum Systems -- 8.1. Hamiltonian for Λ, V, and Cacade Systems -- 8.1.1. Cascade Configuration -- 8.1.2. V and Λ Configurations -- 8.1.3. All Configurations -- 8.2. Density Matrix Equations in the Field Interaction Representation -- 8.3. Steady-State Solutions---Nonlinear Spectroscopy -- 8.3.1. Stationary Atoms -- 8.3.2. Moving Atoms: Doppler Limit -- 8.4. Autler-Townes Splitting -- 8.5. Two-Photon Spectroscopy -- 8.6. Open versus Closed Quantum Systems -- 8.7. Summary -- Problems -- References -- Bibliography -- 9. Three-Level Λ Atoms: Dark States, Adiabatic Following, and Slow Light -- 9.1. Dark States -- 9.2. Adiabatic Following---Stimulated Raman Adiabatic Passage -- 9.3. Slow Light -- 9.4. Effective Two-State Problem for the Λ Configuration -- 9.5. Summary -- 9.6. Appendix: Force on an Atom in the Λ Configuration -- Problems -- References -- Bibliography -- 10. Coherent Transients -- 10.1. Coherent Transient Signals -- 10.2. Free Polarization Decay -- 10.2.1. Homogeneous Broadening -- 10.2.2. Inhomogeneous Broadening -- 10.3. Photon Echo -- 10.4. Stimulated Photon Echo -- 10.5. Optical Ramsey Fringes -- 10.6. Frequency Combs -- 10.7. Summary -- 10.8. Appendix A: Transfer Matrices in Coherent Transients -- 10.9. Appendix B: Optical Ramsey Fringes in Spatially Separated Fields -- Problems -- References -- Bibliography -- 11. Atom Optics and Atom Interferometry -- 11.1. Review of Kirchhoff-Fresnel Diffraction -- 11.1.1. Electromagnetic Diffraction -- 11.1.2. Quantum-Mechanical Diffraction -- 11.2. Atom Optics -- 11.2.1. Scattering by an Amplitude Grating -- 11.2.2. Scattering by Periodic Structures---Talbot Effect -- 11.2.3. Scattering by Phase Gratings---Atom Focusing -- 11.3. Atom Interferometry -- 11.3.1. Microfabricated Elements -- 11.3.2. Counterpropagating Optical Field Elements -- 11.4. Summary -- Problems -- References -- Bibliography -- 12. The Quantized, Free Radiation Field -- 12.1. Free-Field Quantization -- 12.2. Properties of the Vacuum Field -- 12.2.1. Single-Photon State -- 12.2.2. Single-Mode Number State -- 12.2.3. Quasiclassical or Coherent States -- 12.3. Quadrature Operators for the Field -- 12.3.1. Pure n State -- 12.3.2. Coherent State -- 12.4. Two-Photon Coherent States or Squeezed States -- 12.4.1. Calculation of UL(z) -- 12.5. Phase Operator -- 12.6. Summary -- 12.7. Appendix: Field Quantization -- 12.7.1. Reciprocal Space -- 12.7.2. Longitudinal and Transverse Vector Fields -- 12.7.3. Transverse Electromagnetic Field -- 12.7.4. Free Field -- Problems -- References -- Bibliography -- 13. Coherence Properties of the Electric Field -- 13.1. Coherence: Some General Concepts -- 13.1.1. Time versus Ensemble Averages -- 13.1.2. Classical Fields -- 13.1.3. Quantized Fields -- 13.2. Classical Fields: Correlation Functions -- 13.2.1. First-Order Correlation Function -- 13.2.2. Young's Fringes -- 13.2.3. Intensity Correlations---Second-Order Correlation Function -- 13.2.4. Hanbury Brown and Twiss Experiment -- 13.3. Quantized Fields: Density Matrix for the Field and Photon Optics -- 13.3.1. Coherent State -- 13.3.2. Thermal State -- 13.3.3. P(α) Distribution -- 13.3.4. Correlation Functions for the Field -- 13.4. Summary -- Problems -- References -- Bibliography -- 14. Photon Counting and Interferometry -- 14.1. Photodetection -- 14.1.1. Photodetection of Classical Fields -- 14.1.2. Photodetection of Quantized Fields -- 14.2. Michelson Interferometer -- 14.2.1. Classical Fields -- 14.2.2. Quantized Fields -- 14.3. Summary -- Problems -- References -- Bibliography -- 15. Atom---Quantized Field Interactions -- 15.1. Interaction Hamiltonian and Equations of Motion -- 15.1.1. Schrodinger Representation -- 15.1.2. Heisenberg Representation -- 15.1.3. Hamiltonian -- 15.1.4. Jaynes-Cummings Model -- 15.2. Dressed States -- 15.3. Generation of Coherent and Squeezed States -- 15.3.1. Coherent States -- 15.3.2. Squeezed States -- 15.4. Summary -- Problems -- References -- Bibliography -- 16. Spontaneous Decay -- 16.1. Spontaneous Decay Rate -- 16.2. Radiation Pattern and Repopulation of the Ground State -- 16.2.1. Radiation Pattern -- 16.2.2. Repopulation of the Ground State -- 16.3. Summary -- 16.4. Appendix A: Circular Polarization -- 16.5. Appendix B: Radiation Pattern -- 16.5.1. Unpolarized Initial State -- 16.5.2. z-Polarized Excitation -- 16.5.3. Other than z-Polarized Excitation -- 16.6. Appendix C: Quantum Trajectory Approach to Spontaneous Decay -- Problems -- References -- Bibliography -- 17. Optical Pumping and Optical Lattices -- 17.1. Optical Pumping -- 17.1.1. Traveling-Wave Fields -- 17.1.2. z-Polarized Excitation -- 17.1.3. Irreducible Tensor Basis -- 17.1.4. Standing-Wave and Multiple-Frequency Fields -- 17.2. Optical Lattice Potentials -- 17.3. Summary -- 17.4. Appendix: Irreducible Tensor Formalism -- 17.4.1. Coupled Tensors -- 17.4.2. Density Matrix Equations -- Problems -- References -- Bibliography -- 18. Sub-Doppler Laser Cooling -- 18.1. Cooling via Field Momenta Exchange and Differential Scattering -- 18.1.1. Counterpropagating Fields -- 18.2. Sisyphus Picture of the Friction Force for a G = 1/2 Ground State and Crossed-Polarized Fields -- 18.3. Coherent Population Trapping -- 18.4. Summary -- 18.5. Appendix: Fokker-Planck Approach for Obtaining the Friction Force and Diffusion Coefficients --
  • Contents note continued: 18.5.1. Fokker-Planck Equation -- 18.5.2. G = 1/2; lin Polarization -- 18.5.3. G = 1 to H = 2 Transition; σ+ --- σ_ Polarization -- 18.5.4. Equilibrium Energy -- Problems -- References -- Bibliography -- 19. Operator Approach to Atom-Field Interactions: Source-Field Equation -- 19.1. Single Atom -- 19.1.1. Single-Mode Field -- 19.1.2. General Problem---n Field Modes -- 19.2. N-Atom Systems -- 19.3. Source-Field Equation -- 19.4. Source-Field Approach: Examples -- 19.4.1. Average Field and Field Intensity in Spontaneous Emission -- 19.4.2. Frequency Beats in Emission: Quantum Beats -- 19.4.3. Four-Wave Mixing -- 19.4.4. Linear Absorption -- 19.5. Summary -- Problems -- References -- Bibliography -- 20. Light Scattering -- 20.1. General Considerations: Perturbation Theory -- 20.2. Mollow Triplet -- 20.2.1. Dressed-State Approach to Mollow Triplet -- 20.2.2. Source-Field Approach to Mollow Triplet -- 20.3. Second-Order Correlation Function for the Radiated Field -- 20.4. Scattering by a Single Atom in Weak Fields: G ≠ 0 -- 20.5. Summary -- Problems -- References -- Bibliography -- 21. Entanglement and Spin Squeezing -- 21.1. Entanglement by Absorption -- 21.2. Entanglement by Post-Selection---DLCZ Protocol -- 21.3. Spin Squeezing -- 21.3.1. General Considerations -- 21.3.2. Spin Squeezing Using a Coherent Cavity Field -- 21.4. Summary -- Problems -- References -- Bibliography
Control code
ocn587249002
Dimensions
27 cm
Extent
xvi, 519 p.
Isbn
9780691140568
Isbn Type
(hardback : alk. paper)
Lccn
2010014005
Other physical details
ill.
System control number
(OCoLC)587249002

Library Locations

    • ManawatÅ« LibraryBorrow it
      Tennent Drive, Palmerston North, Palmerston North, 4472, NZ
      -40.385340 175.617349
Processing Feedback ...