Coverart for item
The Resource NMR spectroscopy in liquids and solids, Vladimir I. Bakhmutov, (electronic resource)

NMR spectroscopy in liquids and solids, Vladimir I. Bakhmutov, (electronic resource)

Label
NMR spectroscopy in liquids and solids
Title
NMR spectroscopy in liquids and solids
Statement of responsibility
Vladimir I. Bakhmutov
Title variation
Nuclear magnetic resonance spectroscopy in liquids and solids
Creator
Subject
Language
eng
Cataloging source
YDXCP
http://library.link/vocab/creatorName
Bakhmutov, Vladimir I
Dewey number
543/.66
Index
index present
Literary form
non fiction
Nature of contents
  • dictionaries
  • bibliography
http://library.link/vocab/subjectName
  • Nuclear magnetic resonance spectroscopy
  • Spectrum analysis
Label
NMR spectroscopy in liquids and solids, Vladimir I. Bakhmutov, (electronic resource)
Instantiates
Publication
Note
"A CRC title."
Bibliography note
Includes bibliographical references and index
Carrier category
online resource
Carrier MARC source
rdacarrier
Content category
text
Content type code
txt
Content type MARC source
rdacontent
Contents
  • Registration of NMR Signals: General Principles and NMR Equipment
  • 4.2.3.
  • Exchange NMR Spectroscopy
  • 4.2.4.
  • Carr-Purcell-Meiboom-Gill Relaxation Dispersion
  • 4.3.
  • Molecular Mobility from Relaxation Times
  • 4.3.1.
  • Dipole-Dipole Relaxation, Nuclear Overhauser Effect, and Molecular Mobility
  • 4.3.2.
  • Effects of Molecular Motional Anisotropy on Nuclear Relaxation
  • 1.4.1.
  • 4.3.3.
  • Molecular Dynamics in the Presence of Correlation Time Distributions
  • 4.3.4.
  • Distribution of Activation Energies
  • 4.4.
  • NMR Relaxometry: Diffusion Coefficients
  • 4.5.
  • Molecular Dynamics from Low-Field NMR
  • References and Recommended Literature
  • 5.1.
  • Magnets, Decouplers, and NMR Probes
  • Preparation of NMR Samples: Minimal Requirements
  • 5.1.1.
  • Adjustment of Spectral Resolution and Spectral Manipulations
  • 5.1.2.
  • Reference Lines
  • 5.2.
  • Structural Studies by Solution NMR: General Strategies and 1D and 2D NMR Experiments
  • 5.2.1.
  • From ID NMR to 2D Correlation Spectroscopy
  • 5.2.2.
  • 1.4.2.
  • Multi-Quantum NMR
  • 5.2.3.
  • Examples of Structural Studies
  • 5.2.4.
  • Ultrafast NMR
  • 5.3.
  • Conformational (Isomeric) Analysis by NMR in Solutions
  • 5.3.1.
  • Common Principles
  • 5.3.2.
  • Dead Time in NMR Experiments: Influence on NMR Data
  • Determination of Molecular Geometry (Conformations, Isomers) via Chemical Shifts and Spin-Spin Coupling Constants through Chemical Bonds
  • 5.3.3.
  • Molecular Geometry and Spin-Spin Coupling through Space
  • 5.3.4.
  • Conformational Analysis in the Presence of Fast Interconversions
  • 5.4.
  • NOE and Residual Dipolar Coupling Measurements in Structural Studies
  • References and Recommended Literature
  • 6.1.
  • Partially Relaxed NMR Spectra: Resolving the Unresolved Signals and Assigning NMR Signals
  • 1.4.3.
  • 6.2.
  • Relaxation Times in Solutions: Quadrupolar Coupling Constants and Chemical Shift Anisotropy
  • 6.2.1.
  • QCC Values from Variable-Temperature Relaxation Experiments and T1minn Times
  • 6.2.2.
  • T1 Relaxation and DQCC Values in Mobile Structural Units
  • 6.2.3.
  • Chemical-Shift Anisotropy Values from T1 Data
  • 6.3.
  • NMR Relaxation and Intermolecular Interactions
  • Spectral Resolution
  • 6.3.1.
  • Weak Bonding
  • 6.3.2.
  • Ion Pairing
  • 6.3.3.
  • Complexation
  • 6.4.
  • Solvent Relaxation
  • 6.5.
  • Relaxation in Molecular Systems with Chemical Exchanges
  • 1.5.
  • 6.6.
  • Structural Aspects Obtained from Relaxation in Solutions
  • 6.6.1.
  • 1H T1 Criterion in Structural Assignments
  • 6.6.2.
  • Interatomic Distances from T1 Data in Solutions
  • References and Recommended Literature
  • 7.1.
  • Optical Isomers in NMR Spectra
  • 7.2.
  • Enhancement of Sensitivity in NMR Experiments
  • Solution NMR of Biomolecules: General Principles
  • 7.3.
  • Dynamics of Liquids by NMR
  • 7.3.1.
  • Diffusion NMR Spectroscopy in Liquids
  • 7.3.2.
  • High-Pressure NMR: Structure and Dynamics of Liquids
  • 7.4.
  • para-Hydrogen and NMR Spectroscopy in Solutions
  • 7.5.
  • 1.6.
  • Solution NMR Spectroscopy and Heterogeneous Molecular Systems
  • 7.5.1.
  • Low-Field NMR in Heterogeneous Samples
  • 7.6.
  • Free Radicals in NMR Spectra of Solutions
  • References and Recommended Literature
  • 8.1.
  • Detection of NMR Signals in Solids
  • 8.1.1.
  • MAS NMR vs. Wide-Line NMR
  • Machine generated contents note:
  • Two-Dimensional and Multi-Quantum NMR Experiments: General Aspects
  • 8.2.
  • General Approaches and Strategies of NMR Studies in Solids
  • 8.2.1.
  • Nuclei with Spins of 1/2
  • 8.2.2.
  • NMR Experiments on Dipolar Recoupling
  • 8.2.3.
  • Quadrupolar Nuclei
  • 8.2.3.1.
  • Multiple Quantum NMR of Quadrupolar Nuclei in Solids
  • 1.6.1.
  • 8.2.4.
  • High-Pressure NMR in Disordered Solids
  • 8.3.
  • Enhancing Spectral Resolution in Solid-State NMR
  • 8.3.1.
  • Resolving Signals from Different Structural Units in Solids via Paramagnetic Effects
  • 8.4.
  • Assignments of Signals
  • 8.4.1.
  • Proton-Proton Proximity and the Assignment of Signals in Solid-State 'H NMR Spectra
  • Artifacts in 2D NMR
  • 8.4.2.
  • Magnetic Shielding Tensors vs. Isotropic Chemical Shifts
  • 8.5.
  • Multinuclear Solid-State NMR Applications
  • 8.5.1.
  • 31P Solid-State NMR
  • 8.5.1.1.
  • 31P Chemical Shift Tensors
  • 8.5.2.
  • 14N Solid-State NMR
  • 1.6.2.
  • 8.5.2.1.
  • Single-Crystal 14N NMR Experiments
  • 8.5.2.2.
  • 14N NMR in Static Powders
  • 8.5.2.3.
  • 14N MAS NMR
  • 8.5.3.
  • Alkali Metal Ions Li+, Na+, K+, Rb+, and Cs+ for Solid-State NMR
  • 8.5.4.
  • 43Ca Solid-State NMR
  • Multi-Quantum NMR
  • 8.5.5.
  • 35,37Cl, 78,81Br, 127I1, and 17o Solid-State NMR
  • 8.5.6.
  • 51V,93Nb, and 181Ta Solid-State NMR
  • References and Recommended Literature
  • 9.1.
  • Temperature Control and Calibration in Solid-State NMR
  • 9.2.
  • Unusually Fast Molecular Dynamics in Solids
  • 9.3.
  • References and Recommended Literature
  • Molecular Dynamics in Solids Determined by Full Line-Shape Analysis
  • 9.4.
  • One- and Two-Dimensional Exchange NMR Spectroscopy in Solids: Slow Molecular Dynamics
  • 9.5.
  • Dynamics in Solids by Cross-Polarization NMR Experiments
  • 9.6.
  • Molecular Dynamics in Solids by NMR Relaxation Measurements: Common Aspects of Applications
  • 9.6.1.
  • Nuclear Relaxation in Spinning Solids
  • 9.6.2.
  • 2.1.
  • Methodology of Solid-State Relaxation Studies
  • 9.6.3.
  • General Comments on Non-Exponential Relaxation in Solids
  • 9.7.
  • Dynamics in Heterogeneous and Disordered Solids: NMR Spectra and Relaxation Dispersion
  • 9.8.
  • Dynamics in Solids under High Pressure
  • References and Recommended Literature
  • 10.1.
  • Solid-State NMR of Proteins
  • Phenomenology of Chemical Shift
  • 10.1.1.
  • Chemical Shift Tensors in Proteins
  • 10.2.
  • Solid-State NMR in Metals and Alloys
  • 10.3.
  • Porous Diamagnetic Solids: Porosity via NMR Experiments
  • 10.3.1.
  • NMR Cryoporometry
  • 10.3.2.
  • NMR Relaxometry
  • 2.1.1.
  • 10.3.2.1.
  • NMR Relaxometry for Gases
  • 10.3.2.2.
  • Low-Field NMR Relaxometry under High Pressure
  • 10.4.
  • Solid-State NMR and Paramagnetic Molecular Systems
  • 10.4.1.
  • Spin Echo Mapping Technique for Detection of Invisible Nuclei
  • 10.4.2.
  • Detection of Nuclei at Paramagnetic Centers: Paramagnetic Metal Ions
  • Chemical Shift in Diamagnetic Molecular Systems
  • 10.4.3.
  • NMR Spectra of Paramagnetic Solids: General Aspects and Study Strategies
  • 10.4.3.1.
  • NMR Spectra of Quadrupolar Nuclei in Paramagnetic Solids
  • 10.4.3.2.
  • Common Strategies in Structural Studies of Paramagnetic Solids
  • 10.5.
  • Nuclear Relaxation in Paramagnetic Solids: Applications
  • 10.5.1.
  • Strategy for Relaxation Studies of Paramagnetic Solids
  • 1.1.
  • 2.1.2.
  • References and Recommended Literature
  • Relationship Chemical Shift and Atomic Charge
  • 2.1.3.
  • Predicting Chemical Shift Values.
  • 2.1.4.
  • Isotropic Chemical Shift
  • 2.2.
  • Chemical Shifts in the Presence of Unpaired Electrons
  • 2.2.1.
  • Knight Shifts
  • Nuclei in the External Magnetic Field
  • 2.3.
  • Spin-Spin Coupling
  • 2.3.1.
  • Strongly Coupled Spin Systems
  • 2.3.2.
  • Spin-Spin Coupling via Chemical Bonds
  • 2.3.3.
  • Spin-Spin Coupling through Space
  • 2.3.4.
  • Proton-Proton Exchange Coupling
  • 1.2.
  • 2.4.
  • Dipolar Coupling
  • 2.5.
  • Quadrupolar Coupling
  • References and Recommended Literature
  • 3.1.
  • Molecular Motions: Common Characteristics
  • 3.1.1.
  • Isotropic and Anisotropic Molecular Reorientations
  • 3.2.
  • Radiofrequency Irradiation: Continuous-Wave and Radiofrequency Pulses
  • Mechanisms of Spin-Spin and Spin-Lattice Nuclear Relaxation
  • 3.2.1.
  • Intramolecular Dipole-Dipole Relaxation
  • 3.2.2.
  • Intermolecular Dipole-Dipole Relaxation
  • 3.2.3.
  • Quadrupolar Relaxation
  • 3.2.4.
  • Relaxation by Chemical Shift Anisotropy
  • 3.2.5.
  • 1.3.
  • Spin-Rotation and Scalar Relaxation Mechanisms
  • 3.2.6.
  • Cross-Relaxation and Coupled Relaxation
  • 3.3.
  • Spin Diffusion in Solids
  • 3.4.
  • Paramagnetic Relaxation
  • 3.5.
  • Relaxation Time Measurements
  • 3.5.1.
  • From Nuclear Relaxation to Shapes of NMR Signals
  • Non-Selective, Selective, and Bi-Selective T1 Times
  • 3.5.2.
  • Measuring T1p and T2 Times
  • 3.6.
  • Experiments and Measurements: Errors and Problems
  • 3.6.1.
  • Instrumental Errors
  • 3.6.2.
  • Treatment of Relaxation Curves: Approaches and Problems
  • 3.7.
  • 1.4.
  • Artifacts in Relaxation Time Measurements
  • References and Recommended Literature
  • 4.1.
  • Kinetics of Chemical Reactions by NMR Spectroscopy
  • 4.2.
  • Chemical Exchange
  • 4.2.1.
  • Line-Shape Analysis
  • 4.2.2.
  • Slow Chemical Exchange
Control code
ocn909080905
Dimensions
unknown
Extent
1 online resource (pages cm.)
Form of item
online
Isbn
9781482262728
Isbn Type
(electronic bk.)
Media category
computer
Media MARC source
rdamedia
Specific material designation
remote
System control number
(OCoLC)909080905
Label
NMR spectroscopy in liquids and solids, Vladimir I. Bakhmutov, (electronic resource)
Publication
Note
"A CRC title."
Bibliography note
Includes bibliographical references and index
Carrier category
online resource
Carrier MARC source
rdacarrier
Content category
text
Content type code
txt
Content type MARC source
rdacontent
Contents
  • Registration of NMR Signals: General Principles and NMR Equipment
  • 4.2.3.
  • Exchange NMR Spectroscopy
  • 4.2.4.
  • Carr-Purcell-Meiboom-Gill Relaxation Dispersion
  • 4.3.
  • Molecular Mobility from Relaxation Times
  • 4.3.1.
  • Dipole-Dipole Relaxation, Nuclear Overhauser Effect, and Molecular Mobility
  • 4.3.2.
  • Effects of Molecular Motional Anisotropy on Nuclear Relaxation
  • 1.4.1.
  • 4.3.3.
  • Molecular Dynamics in the Presence of Correlation Time Distributions
  • 4.3.4.
  • Distribution of Activation Energies
  • 4.4.
  • NMR Relaxometry: Diffusion Coefficients
  • 4.5.
  • Molecular Dynamics from Low-Field NMR
  • References and Recommended Literature
  • 5.1.
  • Magnets, Decouplers, and NMR Probes
  • Preparation of NMR Samples: Minimal Requirements
  • 5.1.1.
  • Adjustment of Spectral Resolution and Spectral Manipulations
  • 5.1.2.
  • Reference Lines
  • 5.2.
  • Structural Studies by Solution NMR: General Strategies and 1D and 2D NMR Experiments
  • 5.2.1.
  • From ID NMR to 2D Correlation Spectroscopy
  • 5.2.2.
  • 1.4.2.
  • Multi-Quantum NMR
  • 5.2.3.
  • Examples of Structural Studies
  • 5.2.4.
  • Ultrafast NMR
  • 5.3.
  • Conformational (Isomeric) Analysis by NMR in Solutions
  • 5.3.1.
  • Common Principles
  • 5.3.2.
  • Dead Time in NMR Experiments: Influence on NMR Data
  • Determination of Molecular Geometry (Conformations, Isomers) via Chemical Shifts and Spin-Spin Coupling Constants through Chemical Bonds
  • 5.3.3.
  • Molecular Geometry and Spin-Spin Coupling through Space
  • 5.3.4.
  • Conformational Analysis in the Presence of Fast Interconversions
  • 5.4.
  • NOE and Residual Dipolar Coupling Measurements in Structural Studies
  • References and Recommended Literature
  • 6.1.
  • Partially Relaxed NMR Spectra: Resolving the Unresolved Signals and Assigning NMR Signals
  • 1.4.3.
  • 6.2.
  • Relaxation Times in Solutions: Quadrupolar Coupling Constants and Chemical Shift Anisotropy
  • 6.2.1.
  • QCC Values from Variable-Temperature Relaxation Experiments and T1minn Times
  • 6.2.2.
  • T1 Relaxation and DQCC Values in Mobile Structural Units
  • 6.2.3.
  • Chemical-Shift Anisotropy Values from T1 Data
  • 6.3.
  • NMR Relaxation and Intermolecular Interactions
  • Spectral Resolution
  • 6.3.1.
  • Weak Bonding
  • 6.3.2.
  • Ion Pairing
  • 6.3.3.
  • Complexation
  • 6.4.
  • Solvent Relaxation
  • 6.5.
  • Relaxation in Molecular Systems with Chemical Exchanges
  • 1.5.
  • 6.6.
  • Structural Aspects Obtained from Relaxation in Solutions
  • 6.6.1.
  • 1H T1 Criterion in Structural Assignments
  • 6.6.2.
  • Interatomic Distances from T1 Data in Solutions
  • References and Recommended Literature
  • 7.1.
  • Optical Isomers in NMR Spectra
  • 7.2.
  • Enhancement of Sensitivity in NMR Experiments
  • Solution NMR of Biomolecules: General Principles
  • 7.3.
  • Dynamics of Liquids by NMR
  • 7.3.1.
  • Diffusion NMR Spectroscopy in Liquids
  • 7.3.2.
  • High-Pressure NMR: Structure and Dynamics of Liquids
  • 7.4.
  • para-Hydrogen and NMR Spectroscopy in Solutions
  • 7.5.
  • 1.6.
  • Solution NMR Spectroscopy and Heterogeneous Molecular Systems
  • 7.5.1.
  • Low-Field NMR in Heterogeneous Samples
  • 7.6.
  • Free Radicals in NMR Spectra of Solutions
  • References and Recommended Literature
  • 8.1.
  • Detection of NMR Signals in Solids
  • 8.1.1.
  • MAS NMR vs. Wide-Line NMR
  • Machine generated contents note:
  • Two-Dimensional and Multi-Quantum NMR Experiments: General Aspects
  • 8.2.
  • General Approaches and Strategies of NMR Studies in Solids
  • 8.2.1.
  • Nuclei with Spins of 1/2
  • 8.2.2.
  • NMR Experiments on Dipolar Recoupling
  • 8.2.3.
  • Quadrupolar Nuclei
  • 8.2.3.1.
  • Multiple Quantum NMR of Quadrupolar Nuclei in Solids
  • 1.6.1.
  • 8.2.4.
  • High-Pressure NMR in Disordered Solids
  • 8.3.
  • Enhancing Spectral Resolution in Solid-State NMR
  • 8.3.1.
  • Resolving Signals from Different Structural Units in Solids via Paramagnetic Effects
  • 8.4.
  • Assignments of Signals
  • 8.4.1.
  • Proton-Proton Proximity and the Assignment of Signals in Solid-State 'H NMR Spectra
  • Artifacts in 2D NMR
  • 8.4.2.
  • Magnetic Shielding Tensors vs. Isotropic Chemical Shifts
  • 8.5.
  • Multinuclear Solid-State NMR Applications
  • 8.5.1.
  • 31P Solid-State NMR
  • 8.5.1.1.
  • 31P Chemical Shift Tensors
  • 8.5.2.
  • 14N Solid-State NMR
  • 1.6.2.
  • 8.5.2.1.
  • Single-Crystal 14N NMR Experiments
  • 8.5.2.2.
  • 14N NMR in Static Powders
  • 8.5.2.3.
  • 14N MAS NMR
  • 8.5.3.
  • Alkali Metal Ions Li+, Na+, K+, Rb+, and Cs+ for Solid-State NMR
  • 8.5.4.
  • 43Ca Solid-State NMR
  • Multi-Quantum NMR
  • 8.5.5.
  • 35,37Cl, 78,81Br, 127I1, and 17o Solid-State NMR
  • 8.5.6.
  • 51V,93Nb, and 181Ta Solid-State NMR
  • References and Recommended Literature
  • 9.1.
  • Temperature Control and Calibration in Solid-State NMR
  • 9.2.
  • Unusually Fast Molecular Dynamics in Solids
  • 9.3.
  • References and Recommended Literature
  • Molecular Dynamics in Solids Determined by Full Line-Shape Analysis
  • 9.4.
  • One- and Two-Dimensional Exchange NMR Spectroscopy in Solids: Slow Molecular Dynamics
  • 9.5.
  • Dynamics in Solids by Cross-Polarization NMR Experiments
  • 9.6.
  • Molecular Dynamics in Solids by NMR Relaxation Measurements: Common Aspects of Applications
  • 9.6.1.
  • Nuclear Relaxation in Spinning Solids
  • 9.6.2.
  • 2.1.
  • Methodology of Solid-State Relaxation Studies
  • 9.6.3.
  • General Comments on Non-Exponential Relaxation in Solids
  • 9.7.
  • Dynamics in Heterogeneous and Disordered Solids: NMR Spectra and Relaxation Dispersion
  • 9.8.
  • Dynamics in Solids under High Pressure
  • References and Recommended Literature
  • 10.1.
  • Solid-State NMR of Proteins
  • Phenomenology of Chemical Shift
  • 10.1.1.
  • Chemical Shift Tensors in Proteins
  • 10.2.
  • Solid-State NMR in Metals and Alloys
  • 10.3.
  • Porous Diamagnetic Solids: Porosity via NMR Experiments
  • 10.3.1.
  • NMR Cryoporometry
  • 10.3.2.
  • NMR Relaxometry
  • 2.1.1.
  • 10.3.2.1.
  • NMR Relaxometry for Gases
  • 10.3.2.2.
  • Low-Field NMR Relaxometry under High Pressure
  • 10.4.
  • Solid-State NMR and Paramagnetic Molecular Systems
  • 10.4.1.
  • Spin Echo Mapping Technique for Detection of Invisible Nuclei
  • 10.4.2.
  • Detection of Nuclei at Paramagnetic Centers: Paramagnetic Metal Ions
  • Chemical Shift in Diamagnetic Molecular Systems
  • 10.4.3.
  • NMR Spectra of Paramagnetic Solids: General Aspects and Study Strategies
  • 10.4.3.1.
  • NMR Spectra of Quadrupolar Nuclei in Paramagnetic Solids
  • 10.4.3.2.
  • Common Strategies in Structural Studies of Paramagnetic Solids
  • 10.5.
  • Nuclear Relaxation in Paramagnetic Solids: Applications
  • 10.5.1.
  • Strategy for Relaxation Studies of Paramagnetic Solids
  • 1.1.
  • 2.1.2.
  • References and Recommended Literature
  • Relationship Chemical Shift and Atomic Charge
  • 2.1.3.
  • Predicting Chemical Shift Values.
  • 2.1.4.
  • Isotropic Chemical Shift
  • 2.2.
  • Chemical Shifts in the Presence of Unpaired Electrons
  • 2.2.1.
  • Knight Shifts
  • Nuclei in the External Magnetic Field
  • 2.3.
  • Spin-Spin Coupling
  • 2.3.1.
  • Strongly Coupled Spin Systems
  • 2.3.2.
  • Spin-Spin Coupling via Chemical Bonds
  • 2.3.3.
  • Spin-Spin Coupling through Space
  • 2.3.4.
  • Proton-Proton Exchange Coupling
  • 1.2.
  • 2.4.
  • Dipolar Coupling
  • 2.5.
  • Quadrupolar Coupling
  • References and Recommended Literature
  • 3.1.
  • Molecular Motions: Common Characteristics
  • 3.1.1.
  • Isotropic and Anisotropic Molecular Reorientations
  • 3.2.
  • Radiofrequency Irradiation: Continuous-Wave and Radiofrequency Pulses
  • Mechanisms of Spin-Spin and Spin-Lattice Nuclear Relaxation
  • 3.2.1.
  • Intramolecular Dipole-Dipole Relaxation
  • 3.2.2.
  • Intermolecular Dipole-Dipole Relaxation
  • 3.2.3.
  • Quadrupolar Relaxation
  • 3.2.4.
  • Relaxation by Chemical Shift Anisotropy
  • 3.2.5.
  • 1.3.
  • Spin-Rotation and Scalar Relaxation Mechanisms
  • 3.2.6.
  • Cross-Relaxation and Coupled Relaxation
  • 3.3.
  • Spin Diffusion in Solids
  • 3.4.
  • Paramagnetic Relaxation
  • 3.5.
  • Relaxation Time Measurements
  • 3.5.1.
  • From Nuclear Relaxation to Shapes of NMR Signals
  • Non-Selective, Selective, and Bi-Selective T1 Times
  • 3.5.2.
  • Measuring T1p and T2 Times
  • 3.6.
  • Experiments and Measurements: Errors and Problems
  • 3.6.1.
  • Instrumental Errors
  • 3.6.2.
  • Treatment of Relaxation Curves: Approaches and Problems
  • 3.7.
  • 1.4.
  • Artifacts in Relaxation Time Measurements
  • References and Recommended Literature
  • 4.1.
  • Kinetics of Chemical Reactions by NMR Spectroscopy
  • 4.2.
  • Chemical Exchange
  • 4.2.1.
  • Line-Shape Analysis
  • 4.2.2.
  • Slow Chemical Exchange
Control code
ocn909080905
Dimensions
unknown
Extent
1 online resource (pages cm.)
Form of item
online
Isbn
9781482262728
Isbn Type
(electronic bk.)
Media category
computer
Media MARC source
rdamedia
Specific material designation
remote
System control number
(OCoLC)909080905

Library Locations

    • InternetBorrow it
      Albany, Auckland, 0632, NZ
Processing Feedback ...