Coverart for item
The Resource Multiple view geometry in computer vision, Richard Hartley, Andrew Zisserman, (electronic resource)

Multiple view geometry in computer vision, Richard Hartley, Andrew Zisserman, (electronic resource)

Label
Multiple view geometry in computer vision
Title
Multiple view geometry in computer vision
Statement of responsibility
Richard Hartley, Andrew Zisserman
Creator
Contributor
Subject
Language
eng
http://library.link/vocab/creatorName
Hartley, Richard
Illustrations
illustrations
Index
index present
Literary form
non fiction
Nature of contents
bibliography
http://library.link/vocab/relatedWorkOrContributorName
Zisserman, Andrew
http://library.link/vocab/subjectName
  • Computer vision
  • Geometry, Projective
Label
Multiple view geometry in computer vision, Richard Hartley, Andrew Zisserman, (electronic resource)
Instantiates
Publication
Bibliography note
Includes bibliographical references (pages 634-645) and index
Color
mixed
Contents
Cover -- Title -- Copyright -- Dedication -- Contents -- Foreword -- Preface -- 1 Introduction ... a Tour of Multiple View Geometry -- 1.1 Introduction ... the ubiquitous projective geometry -- 1.1.1 Affine and Euclidean Geometry -- 1.2 Camera projections -- 1.3 Reconstruction from more than one view -- 1.4 Three-view geometry -- 1.5 Four view geometry and n-view reconstruction -- 1.6 Transfer -- 1.7 Euclidean reconstruction -- 1.8 Auto-calibration -- 1.9 The reward I : 3D graphical models -- 1.10 The reward II: video augmentation -- Part 0 The Background: Projective Geometry, Transformations and Estimation -- Outline -- 2 Projective Geometry and Transformations of 2D -- 2.1 Planar geometry -- 2.2 The 2D projective plane -- 2.3 Projective transformations -- 2.4 A hierarchy of transformations -- 2.5 The projective geometry of 1D -- 2.6 Topology of the projective plane -- 2.7 Recovery of affine and metric properties from images -- 2.8 More properties of conics -- 2.9 Fixed points and lines -- 2.10 Closure -- 3 Projective Geometry and Transformations of 3D -- 3.1 Points and projective transformations -- 3.2 Representing and transforming planes, lines and quadrics -- 3.3 Twisted cubics -- 3.4 The hierarchy of transformations -- 3.5 The plane at infinity -- 3.6 The absolute conic -- 3.7 The absolute dual quadric -- 3.8 Closure -- 4 Estimation ... 2D Projective Transformations -- 4.1 The Direct Linear Transformation (DLT) algorithm -- 4.2 Different cost functions -- 4.3 Statistical cost functions and Maximum Likelihood estimation -- 4.4 Transformation invariance and normalization -- 4.5 Iterative minimization methods -- 4.6 Experimental comparison of the algorithms -- 4.7 Robust estimation -- 4.8 Automatic computation of a homography -- 4.9 Closure -- 5 Algorithm Evaluation and Error Analysis -- 5.1 Bounds on performance -- 5.2 Covariance of the estimated transformation -- 5.3 Monte Carlo estimation of covariance -- 5.4 Closure -- Part I Camera Geometry and Single View Geometry -- Outline -- 6 Camera Models -- 6.1 Finite cameras -- 6.2 The projective camera -- 6.3 Cameras at infinity -- 6.4 Other camera models -- 6.5 Closure -- 7 Computation of the Camera Matrix P -- 7.1 Basic equations -- 7.2 Geometric error -- 7.3 Restricted camera estimation -- 7.4 Radial distortion -- 7.5 Closure -- 8 More Single View Geometry -- 8.1 Action of a projective camera on planes, lines, and conics -- 8.2 Images of smooth surfaces -- 8.3 Action of a projective camera on quadrics -- 8.4 The importance of the camera centre -- 8.5 Camera calibration and the image of the absolute conic -- 8.6 Vanishing points and vanishing lines -- 8.7 Affine 3D measurements and reconstruction -- 8.8 Determining camera calibration K from a single view -- 8.9 Single view reconstruction -- 8.10 The calibrating conic -- 8.11 Closure -- Part II Two-View Geometry -- Outline -- 9 Epipolar Geometry and the Fundamental Matrix -- 9.1 Epipolar geometry -- 9.2 The fundamental matrix F -- 9.3 Fundamental matrices arising from special mot
Control code
ocn171123855
Dimensions
unknown
Edition
2nd ed
Extent
1 online resource (xvi, 655 pages)
Form of item
online
Isbn
9780511187117
Note
eBooks on EBSCOhost
Other physical details
illustrations (some color)
Specific material designation
remote
System control number
(OCoLC)171123855
Label
Multiple view geometry in computer vision, Richard Hartley, Andrew Zisserman, (electronic resource)
Publication
Bibliography note
Includes bibliographical references (pages 634-645) and index
Color
mixed
Contents
Cover -- Title -- Copyright -- Dedication -- Contents -- Foreword -- Preface -- 1 Introduction ... a Tour of Multiple View Geometry -- 1.1 Introduction ... the ubiquitous projective geometry -- 1.1.1 Affine and Euclidean Geometry -- 1.2 Camera projections -- 1.3 Reconstruction from more than one view -- 1.4 Three-view geometry -- 1.5 Four view geometry and n-view reconstruction -- 1.6 Transfer -- 1.7 Euclidean reconstruction -- 1.8 Auto-calibration -- 1.9 The reward I : 3D graphical models -- 1.10 The reward II: video augmentation -- Part 0 The Background: Projective Geometry, Transformations and Estimation -- Outline -- 2 Projective Geometry and Transformations of 2D -- 2.1 Planar geometry -- 2.2 The 2D projective plane -- 2.3 Projective transformations -- 2.4 A hierarchy of transformations -- 2.5 The projective geometry of 1D -- 2.6 Topology of the projective plane -- 2.7 Recovery of affine and metric properties from images -- 2.8 More properties of conics -- 2.9 Fixed points and lines -- 2.10 Closure -- 3 Projective Geometry and Transformations of 3D -- 3.1 Points and projective transformations -- 3.2 Representing and transforming planes, lines and quadrics -- 3.3 Twisted cubics -- 3.4 The hierarchy of transformations -- 3.5 The plane at infinity -- 3.6 The absolute conic -- 3.7 The absolute dual quadric -- 3.8 Closure -- 4 Estimation ... 2D Projective Transformations -- 4.1 The Direct Linear Transformation (DLT) algorithm -- 4.2 Different cost functions -- 4.3 Statistical cost functions and Maximum Likelihood estimation -- 4.4 Transformation invariance and normalization -- 4.5 Iterative minimization methods -- 4.6 Experimental comparison of the algorithms -- 4.7 Robust estimation -- 4.8 Automatic computation of a homography -- 4.9 Closure -- 5 Algorithm Evaluation and Error Analysis -- 5.1 Bounds on performance -- 5.2 Covariance of the estimated transformation -- 5.3 Monte Carlo estimation of covariance -- 5.4 Closure -- Part I Camera Geometry and Single View Geometry -- Outline -- 6 Camera Models -- 6.1 Finite cameras -- 6.2 The projective camera -- 6.3 Cameras at infinity -- 6.4 Other camera models -- 6.5 Closure -- 7 Computation of the Camera Matrix P -- 7.1 Basic equations -- 7.2 Geometric error -- 7.3 Restricted camera estimation -- 7.4 Radial distortion -- 7.5 Closure -- 8 More Single View Geometry -- 8.1 Action of a projective camera on planes, lines, and conics -- 8.2 Images of smooth surfaces -- 8.3 Action of a projective camera on quadrics -- 8.4 The importance of the camera centre -- 8.5 Camera calibration and the image of the absolute conic -- 8.6 Vanishing points and vanishing lines -- 8.7 Affine 3D measurements and reconstruction -- 8.8 Determining camera calibration K from a single view -- 8.9 Single view reconstruction -- 8.10 The calibrating conic -- 8.11 Closure -- Part II Two-View Geometry -- Outline -- 9 Epipolar Geometry and the Fundamental Matrix -- 9.1 Epipolar geometry -- 9.2 The fundamental matrix F -- 9.3 Fundamental matrices arising from special mot
Control code
ocn171123855
Dimensions
unknown
Edition
2nd ed
Extent
1 online resource (xvi, 655 pages)
Form of item
online
Isbn
9780511187117
Note
eBooks on EBSCOhost
Other physical details
illustrations (some color)
Specific material designation
remote
System control number
(OCoLC)171123855

Library Locations

    • InternetBorrow it
      Albany, Auckland, 0632, NZ
Processing Feedback ...