Coverart for item
The Resource MEMS materials and processes handbook, Reza Ghodssi, Pinyen Lin, editors

MEMS materials and processes handbook, Reza Ghodssi, Pinyen Lin, editors

Label
MEMS materials and processes handbook
Title
MEMS materials and processes handbook
Statement of responsibility
Reza Ghodssi, Pinyen Lin, editors
Contributor
Subject
Language
eng
Member of
Cataloging source
UKM
Illustrations
illustrations
Index
index present
Literary form
non fiction
Nature of contents
bibliography
http://library.link/vocab/relatedWorkOrContributorName
  • Ghodssi, Reza
  • Lin, Pinyen
Series statement
MEMS reference shelf
http://library.link/vocab/subjectName
  • Microelectromechanical systems
  • Microelectromechanical systems
Label
MEMS materials and processes handbook, Reza Ghodssi, Pinyen Lin, editors
Instantiates
Publication
Bibliography note
Includes bibliographical references and index
Contents
  • 1.1. Introduction -- 1.1.1. Design Process -- 1.2. Design Methods for MEMS -- 1.2.1. History of Design Methodologies -- 1.2.2. Structured Design Methods for MEMS -- 1.3. Brainstorming -- 1.4. Microphone Case Studies -- 1.4.1. Microphone Background -- 1.4.2. The Avago Story -- 1.4.2.1. Design Process and Methods -- 1.4.3. The Knowles Story -- 1.4.4. Summary of Key Concepts -- 1.5. Materials and Process Selection -- 1.5.1. Materials Selection -- 1.5.2. Process Selection -- 1.6. Evaluate Concepts -- 1.6.1. Modeling -- 1.7. Optimization and Other Design Methods -- 1.7.1. De sign Optimization -- 1.7.2. Uncertainty Analysis -- 1.7.3. FMEA -- 1.7.4. Design Method Timing -- 1.8. Summary -- References -- 2.1. Overview -- 2.2. Thermal Conversion -- 2.2.1. Process Overview -- 2.2.2. Material Properties and Process Selection Guide for Thermal Oxidation of Silicon -- 2.2.3. Case Studies -- 2.3. Chemical Vapor Deposition -- 2.3.1. Process Overviews -- 2.3.1.1. Introduction -- 2.3.1.2. Low Pressure Chemical Vapor Deposition -- 2.3.1.3. Plasma-Enhanced Chemical Vapor Deposition -- 2.3.1.4. Atmospheric Pressure Chemical Vapor Deposition -- 2.3.1.5. Hot Filament Chemical Vapor Deposition -- 2.3.1.6. Microwave Plasma Chemical Vapor Deposition -- 2.3.2. LPCVD Polycrystalline Silicon -- 2.3.2.1. Material Properties and Process Generalities -- 2.3.2.2. Process Selection Guidelines -- 2.3.2.3. Case Studies -- 2.3.3. LPCVD Silicon Dioxide -- 2.3.3.1. Material Properties and Process Generalities -- 2.3.3.2. Process Selection Guidelines -- 2.3.3.3. Case Studies -- 2.3.4. LPCVD Silicon Nitride -- 2.3.4.1. Material Properties and Process Generalities -- 2.3.4.2. Process Selection Guidelines -- 2.3.4.3. Case Studies -- 2.3.5. LPCVD Polycrystalline SiGe and Ge -- 2.3.5.1. Material Properties and Process Generalities -- 2.3.5.2. Process Selection Guidelines -- 2.3.6. LPCVD Polycrystalline Silicon Carbide -- 2.3.6.1. Material Properties and Process Generalities -- 2.3.6.2. Process Selection Guidelines -- 2.3.6.3. Case Studies -- 2.3.7. LPCVD Diamond -- 2.3.7.1. Material Properties and Process Generalities -- 2.3.7.2. Process Selection Guidelines -- 2.3.7.3. Case Studies -- 2.3.8. APCVD Polycrystalline Silicon Carbide -- 2.3.8.1. Material Properties and Process Generalities -- 2.3.8.2. Process Selection Guidelines -- 2.3.9. PECVD Silicon -- 2.3.9.1. Material Properties and Process Generalities -- 2.3.9.2. Process Selection Guidelines -- 2.3.10. PECVD Silicon Dioxide -- 2.3.10.1. Material Properties and Process Generalities -- 2.3.10.2. Process Selection Guidelines -- 2.3.11. PECVD Silicon Nitride -- 2.3.11.1. Material Properties and Process Generalities -- 2.3.11.2. Process Selection Guidelines -- 2.3.12. PECVD Silicon Germanium -- 2.3.12.1. Material Properties and Process Generalities -- 2.3.12.2. Process Selection Guidelines -- 2.3.12.3. Case Studies -- 2.3.13. PECVD Silicon Carbide -- 2.3.13.1. Material Properties and Process Generalities -- 2.3.13.2. Process Selection Guidelines -- 2.3.13.1. Case Studies -- 2.3.14. PECVD Carbon-Based Films -- 2.3.14.1. Material Properties and Process Generalities -- 2.3.14.2. Process Selection Guidelines -- 2.4. Epitaxy -- 2.4.1. Process Overviews -- 2.4.2. Epi-Polysilicon -- 2.4.2.1. Material Properties and Process Generalities -- 2.4.2.2. Process Selection Guidelines -- 2.4.2.3. Case Studies -- 2.4.3. Epitaxial Silicon Carbide -- 2.4.3.1. Material Properties and Process Generalities -- 2.4.3.2. Process Selection Guidelines -- 2.4.3.3. Case Studies -- 2.4.4. III-V Materials and Gallium Nitride -- 2.4.4.1. Material Properties and Process Generalities -- 2.4.4.2. Process Selection Guidelines -- 2.4.4.3. Case Studies -- 2.5. Physical Vapor Deposition -- 2.5.1. Process Overviews -- 2.5.2. Sputter-Deposited Si -- 2.5.2.1. Material Properties and Process Generalities -- 2.5.2.2. Process Selection Guidelines -- 2.5.3. Sputter-Deposited SiC -- 2.5.4. Sputter-Deposited Si02 -- 2.5.5. Sputter-Deposited Diamondlike Carbon -- 2.5.6. Carbon Films Deposited by Pulsed Laser Deposition -- 2.6. Atomic Layer Deposition -- 2.6.1. Process Overview -- 2.6.2. Process Selection Guidelines and Material Properties -- 2.7. Spin-On Films -- References -- 3.1. Introduction -- 3.1.1. Overview -- 3.1.2. Fabrication Tradeoffs -- 3.2. Physical Vapor Deposition -- 3.2.1. Evaporation -- 3.2.1.1. Thermal Evaporation -- 3.2.1.2. E-Beam Evaporation -- 3.2.1.3. Issues with Alloys -- 3.2.2. Sputtering -- 3.2.2.1. DC Sputtering -- 3.2.2.2. RF Sputtering -- 3.2.2.3. Step Coverage -- 3.2.2.4. Other Issues in Sputtering -- 3.2.3. Pulsed Laser Deposition -- 3.3. Electrochemical Deposition -- 3.3.1. Electroplating -- 3.3.1.1. Electrochemical Reactions -- 3.3.1.2. Deposition Process -- 3.3.1.3. Overpotential -- 3.3.1.4. Bath Composition -- 3.3.1.5. Current Waveform -- 3.3.1.6. Equipment -- 3.3.1.7. Process Flow -- 3.3.1.8. Nickel -- 3.3.1.9. Copper -- 3.3.1.10. Gold -- 3.3.1.11. Nickel Alloys -- 3.3.2. Electroless Plating -- 3.3.2.1. Nickel -- 3.3.2.2. Copper -- 3.3.2.3. Gold -- 3.3.3. Comparison of Electroplating and Electroless Plating -- 3.4. LIGA and UV-LIGA Processes -- 3.4.1. Process Explanation -- 3.4.2. Electroplating in LIGA and UV-LIGA Microstructures -- 3.4.3. Multilevel Metal Structures -- 3.5. Materials Properties and Process Selection Guidelines for Metals -- 3.5.1. Adhesion -- 3.5.2. Electrical Properties -- 3.5.3. Mechanical Properties -- 3.5.4. Thermal Properties -- 3.5.5. Magnetic Properties -- References -- 4.1. SU-8 -- 4.1.1. Material Properties -- 4.1.2. Processing Variations -- 4.1.2.1. Partial Exposure -- 4.1.2.2. Direct Writing -- 4.1.2.3. Removal of SU-8 -- 4.1.2.4. Release of SU-8 -- 4.1.2.5. Bonding -- 4.1.2.6. Transfer -- 4.1.2.7. SU-8 as an Etch Mask -- 4.1.3. Lessons Learned -- 4.1.4. Examples of SU-8 Application -- 4.2. PDMS -- 4.2.1. Material Properties -- 4.2.2. Processing Techniques -- 4.2.3. Biological Application Guide -- 4.2.3.1. Stamp Material for Protein Transfer: Microcontact Printing -- 4.2.3.2. Microfluidic Devices -- 4.2.4. Case Study -- 4.3. Polyimide -- 4.3.1. Material Properties -- 4.3.2. Processing Variations -- 4.3.2.1. Removal of Polyimide -- 4.3.2.2. Release of Polyimide -- 4.3.2.3. Bonding -- 4.3.3. Lessons Learned -- 4.3.4. Case Study -- 4.4. Hydrogels -- 4.4.1. Gelatin -- 4.4.2. Chitosan -- 4.4.3. Polyethylene Glycol -- 4.4.4. Case Studies -- 4.5. Parylene -- 4.5.1. Material Properties -- 4.5.2. Processing Techniques -- 4.5.3. Lessons Learned -- 4.5.4. Case Study -- 4.6. Conductive Polymers -- 4.6.1. Material Properties -- 4.6.2. Actuation Mechanism and Theories -- 4.6.3. Applications -- 4.6.3.1. Actuators -- 4.6.3.2. Conducting Polymer as a Strain Gauge Material -- 4.6.4. Processing Techniques -- 4.6.4.1. Deposition -- 4.6.4.2. Patterning -- 4.6.4.3. Release -- 4.6.4.4. Process Considerations -- 4.6.5. Case Study -- 4.7. Other Polymers -- 4.7.1. Benzocyclobutene -- 4.7.2. Liquid Crystal Polymer -- 4.8. Polymers for Embossing and Molding -- 4.8.1. Technical Overview -- 4.8.2. Substrate Material Selection -- 4.8.2.1. Polymethylmethacrylate -- 4.8.2.2. Polycarbonate -- 4.8.2.3. Polytetrafluoroethylene -- 4.8.2.4. Cyclic Olefin Copolymer -- 4.8.3. Tool Selection -- 4.8.4. Mold Material Selection and Fabrication -- 4.8.4.1. Silicon -- 4.8.4.2. Nickel -- 4.8.4.3. SU-8 -- 4.8.5. Conventional Machining of Molds -- 4.8.5.1. Milling -- 4.8.5.2. Laser -- 4.8.5.3. Focused Ion Beam -- 4.8.5.4. Fixture of Molds -- 4.8.5.5. Release Coatings -- 4.8.6. Process Development -- 4.8.7. Minimum Substrate Thickness -- 4.9. Materials Properties -- References -- 5.1. Introduction to Piezoelectric Thin Films -- 5.1.1. Direct and Converse Piezoelectricity -- 5.1.2. Materials [—] Ferroelectrics and Nonferroelectrics -- 5.1.3. Fundamental Design Equations and Models -- 5.1.3.1. Linear Constitutive Equations of Piezoelectricity -- 5.1.3.2. Electromechanical Coupling Factors -- 5.1.3.3. Influence of Boundary Conditions -- 5.1.3.4. Device Configurations -- 5.1.3.5. Free Strain and Blocking Force -- 5.1.3.6. Cantilever Unimorph Model -- 5.1.3.7. Actuator Force Generation Against External Loads -- 5.1.3.8. Piezoelectric Sensing -- 5.1.3.9. Equivalent Circuit Models -- 5.1.3.10. Thin-Film Ferroelectric Nonlinearity -- 5.1.3.11. Heat Generation -- 5.1.4. Materials Selection Guide -- 5.1.5. Applications -- 5.2. Polar Materials: A1N and ZnO -- 5.2.1. Material Deposition -- 5.2.2. Patterning Techniques -- 5.2.3. Device-Design Concerns -- 5.2.4. Device Examples -- 5.2.5. Case Study -- 5.3. Ferroelectrics: PZT -- 5.3.1. Material Deposition -- 5.3.2. Patterning Techniques -- 5.3.3. Device Design Concerns -- 5.3.4. Device Examples -- 5.3.5. Case Study on the Design and Processing of a RF MEMS Switch Using PZT Thin-Film Actuators -- 5.4. Summary -- References -- 6.1. Introduction and Principle -- 6.1.1. Basic Principle -- 6.1.2. Introduction of TiNi and TiNi-Base Ternary Alloys -- 6.1.3. Super-Elasticity -- 6.1.4. One-Way Type, Two-Way Type, All-Round-Way Type -- 6.2. Materials Properties and Fabrication Process of SMA Actuators -- 6.2.1. Bulk Material -- 6.2.2. Thin Film -- 6.2.2.1. Sputtering --
  • Contents note continued: 6.2.2.2. Evaporation -- 6.2.2.3. Non-planar Thin Film Deposition -- 6.2.3. Micromachining -- 6.2.4. Etching and Lift-Off -- 6.2.4.3. Case and Example -- 6.2.5. Assembly -- 6.2.5.1. Mechanical Fixation -- 6.2.5.2. Adhesion -- 6.2.5.3. Welding -- 6.2.5.4. Soldering -- 6.2.6. Materials and Processes Selection Guidance -- 6.2.6.1. Materials (Bulk/Thin Film) -- 6.2.6.2. Process -- 6.3. Applications and Devices -- 6.3.1. Medical -- 6.3.1.1. Stents -- 6.3.1.2. Endoscopes -- 6.3.1.3. Catheters -- 6.3.1.4. Micro Clips and Grippers -- 6.3.2. Fluidic Devices -- 6.3.3. Optical Fiber Switch -- 6.3.4. Tactile Pin Display -- 6.3.5. AFM Cantilever -- 6.3.6. Case Studies and Lessons Learned -- 6.3.6.1. Designs -- 6.3.6.2. Heating and Cooling -- 6.4. Summary -- References -- 7.1. Dry Etching -- 7.1.1. Etch Metrics -- 7.2. Plasma Etching -- 7.2.1. Types of Etching -- 7.2.2. Plasma Sources -- 7.3. Plasma Process Parameters and Control -- 7.3.1. Energy-Driven Anisotropy -- 7.3.2. Inhibitor-Driven Anisotropy -- 7.3.3. Selectivity in Plasma Etching -- 7.4. Case Study: Etching Silicon, Silicon Dioxide, and Silicon Nitride -- 7.5. Case Study: High-Aspect-Ratio Silicon Etch Process -- 7.5.1. Cryogenic Dry Etching -- 7.5.2. Bosch Process -- 7.5.3. Understanding Trends for DRIE Recipe Development -- 7.6. High-Aspect-Ratio Etching of Piezoelectric Materials -- 7.6.1. Case Study: High-Aspect-Ratio Etching of Glass (Pyrex®) and Quartz -- 7.6.2. High-Aspect-Ratio Etching of Piezoelectric Materials -- 7.7. Etching of Compound Semiconductors -- 7.7.1. Case Study: Etching of GaAs and AIGaAs -- 7.7.2. Case Study: Etching of InP, InGaAs, InSb, and InAs -- 7.8. Case Study: Ion Beam Etching -- 7.9. Summary -- References -- 8.1. Introduction -- 8.2. Principles and Process Architectures for Wet Etching -- 8.2.1. Surface Reactions and Reactant/Product Transport -- 8.2.2. Etchant Selectivity and Masking Considerations -- 8.2.3. Direct Etching and Liftoff Techniques -- 8.2.4. Sacrificial Layer Removal -- 8.2.5. Substrate Thinning and Removal -- 8.2.6. Impact on Process Architecture -- 8.2.7. Process Development for Wet Etches -- 8.2.8. Additional Considerations and Alternatives -- 8.3. Evaluation and Development of Wet-Etch Facilities and Procedures -- 8.3.1. Facility Requirements -- 8.3.1.1. General Facilities -- 8.3.1.2. Wet-Bench Services -- 8.3.1.3. Wet-Bench Equipment -- 8.3.1.4. Safety -- 8.3.2. Wafer Handling Considerations -- 8.3.3. Safety Concerns -- 8.3.4. Training -- 8.4. IC-Compatible Materials and Wet Etching -- 8.4.1. Oxide and Dielectric Etching -- 8.4.2. Silicon, Polysilicon, and Germanium Isotropic Etching -- 8.4.3. Standard Metal Etching -- 8.4.4. Photoresist Removal Techniques and Wafer Cleaning Processes -- 8.4.5. Examples: Wet Chemical Etching of IC-Compatible Materials -- 8.4.5.1. Example 1: Wet Etch of Low-Temperature Oxide -- 8.4.5.2. Example 2: Wet Etch of Silicon Nitride on Silicon -- 8.4.5.3. Example 3: Sacrificial Etch of Deposited Polysilicon Under a Structural Layer of Stress-Controlled Silicon Nitride -- 8.4.5.4. Example 4: Aluminum Etching over Patterned Nitride, Oxide, and Silicon -- 8.4.5.5. Example 5: Junction Depth Determination for an Integrated MEMS Device -- 8.5. Nonstandard Materials and Wet Etching -- 8.5.1. Nonstandard Dielectric, Semiconductor, and Metal Etching -- 8.5.2. Plastic and Polymer Etching -- 8.5.3. Examples: Wet Chemical Etching of Nonstandard Materials -- 8.5.3.1. Example 1: BCB Patterning and Etching -- 8.5.3.2. Example 2: COC Patterning and Solvent Bonding -- 8.5.3.3. Example 3: LIGA Mold Removal -- 8.6. Anisotropic Silicon Etching and Silicon Etch Stops -- 8.6.1. Anisotropic Etching of Silicon -- 8.6.2. Heavily Doped Silicon Etch Stops -- 8.6.3. Lightly Doped Silicon and Silicon[–]Germanium Etch Stops -- 8.6.4. Ion-Implanted Silicon Etch Stops -- 8.6.5. Electrochemical Etching and Electrochemical Etch Stops -- 8.6.6. Photoassisted Silicon Etching and Etch Stops -- 8.6.7. Thin-Film Etch Stops -- 8.6.8. Examples: Wet Chemical and Electrochemical Etch Stops -- 8.6.8.1. Example 1: Anisotropic Silicon Etching of an SOI Wafer -- 8.6.8.2. Example 2: Heavy Boron-Doped Etch Stop -- 8.6.8.3. Example 3: Electrochemical Etch Stop -- 8.7. Sacrificial Layer Etching -- 8.7.1. Sacrificial Layer Removal Techniques -- 8.7.2. Sacrificial Oxide Removal for Polysilicon Microstructures -- 8.7.3. Alternative Sacrificial and Structural Layer Combinations -- 8.7.4. Etch Accelerator Layers for Enhanced Sacrificial Layer Removal -- 8.7.5. Rinse Liquid Removal and Antistiction Coatings -- 8.7.6. Examples: Sacrificial Layer Removal and Structural Layer Release -- 8.7.6.1. Example 1: Fine-Grain Stress-Controlled Polysilicon with an Oxide Sacrificial Layer -- 8.7.6.2. Example 2: Poly-SiGe on a Patterned Oxide/Nitride Laminate -- 8.7.6.3. Example 3: Silicon Nitride on a Polysilicon Sacrificial Layer -- 8.7.6.4. Example 4: Aluminum on Photoresist -- 8.8. Porous Silicon Formation with Wet Chemistry -- 8.8.1. Nanoporous, Mesoporous, and Macroporous Silicon Formation -- 8.8.2. Selective Porous Silicon Removal -- 8.8.3. Examples: Porous Silicon Formation -- 8.8.3.1. Example 1: Chemical Porous Silicon Formation -- 8.8.3.2. Example 2: Nanoporous Silicon Formation -- 8.8.3.3. Example 3: Mesoporous Silicon Formation -- 8.8.3.4. Example 4: Macroporous Silicon Formation -- 8.9. Layer Delineation and Defect Determination with Wet Etchants -- 8.9.1. Dopant Level and Defect Determination with Wet Etchants -- 8.9.2. Layer Delineation with Wet Etchants -- 8.9.3. Examples: Layer Delineation and Defect Determination -- 8.9.3.1. Example 1: Metallurgical Junction Determination -- 8.9.3.2. Example 2: Cross-Sectioning and Layer Delineation -- References -- 9.1. Overview -- 9.2. UV Lithography -- 9.2.1. Photo Masks -- 9.2.2. Optical Projection Systems -- 9.2.2.1. Contact Aligner -- 9.2.2.2. Stepper -- 9.2.3. Photoresist -- 9.2.3.1. Positive Photoresist -- 9.2.3.2. Negative Photoresist -- 9.2.3.3. Image Reversal for Positive Resist (Converting Positive Resist into a Negative Resist) -- 9.2.4. Substrate -- 9.2.5. Processing Steps for UV Lithography -- 9.2.5.1. Deposit Photoresist -- 9.2.5.2. Expose Photoresist -- 9.2.5.3. Develop Photoresist -- 9.2.5.4. Transfer Pattern -- 9.2.5.5. Remove Photoresist -- 9.3. Grayscale Lithography -- 9.3.1. Photomask Pixelation -- 9.3.2. Photoresist Properties for Grayscale Lithography -- 9.3.2.1. Contrast and Thickness -- 9.3.2.2. Exposure and Developing Times -- 9.3.2.3. Etch Selectivity -- 9.4. X-Ray Lithography -- 9.4.1. X-Ray Masks -- 9.4.2. X-Ray Photoresists -- 9.4.3. Exposure -- 9.4.4. Development -- 9.5. Direct-Write Lithography -- 9.5.1. E-Beam Lithography -- 9.5.2. Ion Beam Lithography and Focused Ion Beam (FIB) -- 9.5.3. Gas-Assisted Electron and Ion Beam Lithography -- 9.5.4. Dip-Pen Lithography (DPN) -- 9.5.5. Direct-Write Laser -- 9.5.6. Stereolithography and Microstereolithography -- 9.6. Print/Imprint Lithography -- 9.6.1. Inkjet Printing -- 9.6.2. Soft Lithography -- 9.6.3. Nanoimprint Lithography (NIL) -- 9.6.4. Transfer Printing -- 9.7. Case Studies -- 9.7.1. Case Study 1: Substrate Cleaning-RCA Clean(s) -- 9.7.1.1. Recipe Steps -- 9.7.1.2. Notes -- 9.7.2. Case Study 2: Substrate Cleaning, O2 Plasma Clean -- 9.7.2.1. Recipe Steps -- 9.7.2.2. Note -- 9.7.3. Case Study 3: Substrate Cleaning, Solvent Clean -- 9.7.3.1. Recipe Steps -- 9.7.3.2. Note -- 9.7.4. Case Study 4: Positive Photoresist Processing: General Processing for Shipley 1800 Series Photoresist -- 9.7.4.1. Recipe Steps -- 9.7.5. Case Study 5: Positive Photoresist Processing: Specific Processing for Shipley S1813 -- 9.7.5.1. Recipe Steps -- 9.7.6. Case Study 6: Positive Photoresist Processing: Specific Processing for OiR 906-10 -- 9.7.6.1. Recipe Steps -- 9.7.6.2. Notes -- 9.7.7. Case Study 7: Negative Photoresist Processing: Specific Processing for NR7-1500PY -- 9.7.7.1. Recipe Steps -- 9.7.7.2. Note 1 -- 9.7.7.3. Note 2 -- 9.7.8. Case Study 8: E-Beam Lithography -- 9.7.8.1. Notes on Using the NPGS Software -- 9.7.9. Case Study 9: Fabrication of PDMS Templates -- 9.7.10. Case Study 10: Photomask Fabrication [226, 227] -- 9.7.10.1. Photomask Defects -- 9.7.10.2. Grayscale Lithography Pixelated Photomasks -- 9.7.10.3. Mask Manufacturers -- 9.7.11. Case Study 11: Multiphoton Absorption Polymerization (MAP) -- 9.7.12. Case Study 12: Lithography Using Focused Ion Beams -- References -- 10.1. Overview -- 10.2. Applications -- 10.2.1. Electrical Properties -- 10.2.2. Etch Stop Techniques -- 10.2.3. Materials and Process Selection Guidelines: Etch Stop Techniques -- 10.3. In Situ Doping -- 10.3.1. Chemical Vapor Deposition -- 10.3.2. Crystal Growth and Epitaxy -- 10.4. Diffusion -- 10.4.1. Gas Phase Diffusion -- 10.4.2. Solid State Diffusion -- 10.4.3. Masking Materials -- 10.4.4. Modeling -- 10.5. Ion Implantation -- 10.5.1. Equipment -- 10.5.2. Masking Materials -- 10.5.3. Modeling -- 10.5.4. Crystal Damage -- 10.5.5. Buried Insulator Layers -- 10.5.6. Case Study: Heavily Doped Polysilicon -- 10.6. Plasma Doping Processes -- 10.7. Dopant Activation Methods -- 10.7.1. Conventional Annealing Methods -- 10.7.2. Rapid Thermal Processes -- 10.7.3. Low-Temperature Activation -- 10.7.4. Process Selection Guide: Dopant Activation --
  • Contents note continued: 10.7.5. Case Study: Rapid Thermal Anneal Versus Conventional Thermal Anneal -- 10.8. Diagnostics -- 10.8.1. Electrical Measurements -- 10.8.2. Junction Staining Techniques -- 10.8.3. SIMS -- 10.8.4. Case Study: Characterizing Junctions and Diagnosing Implant Anomalies -- References -- 11.1. Introduction -- 11.2. Direct Wafer Bonding -- 11.2.1. Background and Physics -- 11.2.2. Parameters for Successful Direct Wafer Bonding -- 11.2.2.1. Surface Roughness -- 11.2.2.2. Waviness or Nanotopography -- 11.2.2.3. Wafer Shape -- 11.2.3. Recommendations for Successful Direct Wafer Bonding -- 11.2.4. Procedure of Direct Wafer Bonding -- 11.2.4.1. Surface Preparation for Direct Wafer Bonding -- 11.2.4.2. Bonding Step [—] By Hand or by Using a Wafer Bonding Tool -- 11.2.4.3. Basic Operation Principle of a Wafer Bonding Tool -- 11.2.4.4. Inspection Before Heat Treatment -- 11.2.4.5. Thermal Treatment to Increase the Bond Strength -- 11.2.4.6. Remaining Fabrication Process for MEMS Device -- 11.2.5. Anodic Bonding -- 11.2.6. Silicon[—]Glass Laser Bonding -- 11.3. Wafer Bonding with Intermediate Material -- 11.3.1. Thermocompression Bonding -- 11.3.2. Eutectic Bonding -- 11.3.3. Polymer Bonding -- 11.4. Direct Comparison of Wafer Bonding Techniques -- 11.5. Bonding of Heterogeneous Compounds -- 11.6. Wafer Bonding Process Integration -- 11.6.1. Localized Wafer Bonding -- 11.6.2. Through Wafer via Technology -- 11.7. Characterization Techniques for Wafer Bonding -- 11.8. Existing Wafer Bonding Infrastructure -- 11.8.1. Wafer Bonding Services -- 11.8.2. Bonding Tool Vendors -- 11.8.2.1. Applied Microengineering Ltd (AML), UK -- 11.8.2.2. EV Group (EVG), Austria -- 11.8.2.3. Mitsubishi Heavy Industries Ltd. (MHI), Japan -- 11.8.2.4. SUSS MicroTec AG, Germany -- 11.9. Summary and Outlook -- References -- 12.1. MEMS Packages and Applications -- 12.1.1. Packaging Classes -- 12.1.2. MEMS Versus Microcircuit or Integrated Circuit Packaging -- 12.1.3. Application Drivers and Interfaces -- 12.1.4. Interfaces to Other System Components -- 12.1.4.1. Power and Signals Interface -- 12.1.4.2. Optical Interface -- 12.1.4.3. Microfluidic Interface -- 12.1.4.4. Environmental Interface -- 12.2. Package Selection -- 12.2.1. Metal -- 12.2.2. Ceramic -- 12.2.3. Plastic -- 12.2.4. Array Packaging Materials/Wafer Level Packaging -- 12.2.5. Custom Packaging -- 12.2.6. Silicon Encapsulation -- 12.2.7. Glass Encapsulation -- 2.3. Lids and Lid Seals -- 12.3.1. Optical Applications -- 12.4. Die Attach Materials and Processes -- 12.4.1. Conductive Die Attach -- 12.4.2. Metal-Filled Glasses and Epoxies -- 12.4.3. Other Die Attach Materials -- 12.4.4. Flip-Chip Bonding -- 12.4.5. Tape Interconnects -- 12.5. Wire Bonding -- 12.5.1. Gold Wire Bonding -- 12.5.1.1. Au-Al System -- 12.5.1.2. Au-Ag System -- 12.5.1.3. Au-Au System -- 12.5.1.4. Au-Cu System -- 12.5.2. Aluminum Systems -- 12.5.2.1. Al-Al System -- 12.5.2.2. Al-Ag System -- 12.5.2.3. Al-Ni System -- 12.5.3. Copper Systems -- 12.6. Electrical Connection Processes -- 12.7. Encapsulation -- 12.7.1. Polyurethane -- 12.7.2. Polyimide -- 12.7.3. Polydimethylsiloxane (PDMS) -- 12.7.4. Epoxy -- 12.7.5. Fluorocarbon (Polytetrafluoroethylene) -- 12.7.6. Acrylic (PMMA) -- 12.7.7. Parylene -- 12.7.8. Liquid Crystal Polymer -- 12.8. Electrical and Thermal Requirements -- 12.8.1. Electrical Considerations -- 12.8.2. Thermal Considerations -- 12.9. Hermeticity and Getter Materials -- 12.9.1. Hermeticity and Pressurized Packaging -- 12.9.2. Hermeticity and Vacuum Packaging -- 12.10. Quality and Reliability -- 12.10.1. MEMS Packaging Reliability Concerns -- 12.10.1.1. Thermal Effects -- 12.10.1.2. Shock and Vibration -- 12.10.1.3. Humidity -- 12.10.2. MEMS Packaging and Quality Assurance -- 12.11. Case Studies -- 12.11.1. MEMS Accelerometer -- 12.11.2. Micro-mirror Array -- 12.11.3. MEMS Microphone -- 12.11.4. MEMS Shutters -- 12.12. Summary -- References -- 13.1. Release Processes and Surface Treatments to Prevent Stiction -- 13.1.1. Wet Chemical Release Techniques -- 13.1.2. Dry Release Techniques -- 13.2. Surface Analysis -- 13.2.1. Surface Chemical Composition -- 13.2.1.1. X-Ray Photoelectron Spectroscopy (XPS or ESCA) -- 13.2.1.2. Scanning Auger Electron Spectroscopy (AES) -- 13.2.1.3. Energy Dispersive X-Ray Spectroscopy (EDS or EDX) -- 13.2.1.4. Secondary Ion Mass Spectroscopy (SIMS) -- 13.2.2. Surface Structure and Morphology -- 13.2.2.1. Atomic Force Microscopy (AFM) -- 13.2.2.2. Scanning Electron Microscopy (SEM) -- 13.2.3. Surface Energy Measurements -- 13.3. Adhesion and Friction of MEMS -- 13.3.1. Measurements of Adhesion and Friction -- 13.3.1.1. Cantilever Beam Array Technique -- 13.3.1.2. Double-Clamped Beam Array Technique -- 13.3.1.3. Friction Test Structures -- 13.3.2. Effects of Surface Roughness -- 13.4. Chemical Modification of MEMS Surfaces -- 13.4.1. Treatments for Low Surface Energy -- 13.4.2. Siloxane and Silane Treatments -- 13.4.3. Weakly Chemisorbed Surfactant Films -- 13.4.4. Materials Properties and Process Selection Guidance -- 13.5. Surface Considerations for Biological Applications -- 13.5.1. Surface Modification Techniques -- 13.5.2. Modification of Pristine Substrate Surfaces -- 13.5.2.1. Plasma Treatment -- 13.5.2.2. Physical Adsorption -- 13.5.2.3. Covalent Linkage -- 13.5.3. Modification of Pre-treated Substrate Surfaces -- 13.5.3.1. Chemistry of Hydroxyl Groups (R-OH: Alcohols) -- 13.5.3.2. Chemistry of Amino Groups (R[–]NH2: Amines) -- 13.5.3.3. Chemistry of Carboxyl Groups (R[–]COOH: Carboxylic Acids) -- 13.5.3.4. Chemistry of Mercapto Groups (R[–]SH; Thiols) -- 13.5.3.5. Chemistry of Formyl Groups (R[–]CHO: Aldehydes) -- 13.5.4. Case Studies -- 13.5.4.1. Case Study 1: Promotion of Immobilized Bioactive Proteins Biological Activity -- 13.5.4.2. Case Study 2: Effective Enhancement of Fluorescence Detection Efficiency Using Alternative Blocking Process in Protein Microarray Assays -- 13.5.4.3. Case Study 3: Control of Specific Reaction Kinetics Involving Bifunctional Cross-Linkers -- 13.5.4.4. Case Study 4: Surface Modification Using Elaborately Derivatized Functional Groups -- 13.5.4.5. Case Study 5: Surface Patterning by Microcontact Printing -- 13.6. Surface Coating for Optical Applications -- 13.6.1. Fundamentals of Optical Phenomena on Surface Coatings -- 13.6.1.1. Index Variation of Materials Versus Wavelength [108] -- 13.6.1.2. Fresnel Equation for Reflection [108] -- 13.6.1.3. Principle of Antireflection (AR) [108] -- 13.6.1.4. Principle of Absorption [108, 109] -- 13.6.1.5. Surface Plasmon Resonance -- 13.6.2. Material Properties and Process Selection Guidelines -- 13.6.2.1. High Reflection Applications -- 13.6.2.2. Antirellection Applications -- 13.6.2.3. Considerations for Surface Smoothness and Roughness -- 13.6.2.4. Polymer Materials for Optical Applications -- 13.6.2.5. Surface Coatings for Polymer Materials -- 13.6.2.6. Applications for Light Absorption -- 13.7. Chemical Mechanical Planarization -- 13.7.1. Overview -- 13.7.1.1. Chemistry of CMP -- 13.7.1.2. Mechanics of CMP -- 13.7.2. Applications -- 13.7.2.1. Smoothing and Local Planarization -- 13.7.2.2. Global Planarization -- 13.7.2.3. Trench Fill -- 13.7.3. Pads and Slurry -- 13.7.3.1. Summary of Slurry and Pad -- 13.7.4. Polishing Considerations for Different Materials -- 13.7.4.1. Rate Comparison and Selectivity -- 13.7.4.2. Dielectrics -- 13.7.4.3. Metals -- 13.7.4.4. Polymers -- 13.7.5. Cleaning and Contamination Control -- 13.7.6. Case Study -- 13.7.6.1. Case Study 10: Magnetic Microdevice -- 13.7.6.2. Case Study 11: A Drug-Delivery Probe with an In-line Flow Meter -- 13.7.6.3. Case Study 12: Nanomechanical Optical Devices -- 13.7.6.4. Case Study 13: CMP of SU-8/Permalloy Combination in MEMS Devices -- References -- 14.1. Introduction -- 14.2. What Is Process Integration? -- 14.3. What Is an Integrated MEMS Process? -- 14.4. Differences Between IC and MEMS Fabrication -- 14.5. Challenges of MEMS Process Integration -- 14.5.1. Topography -- 14.5.2. Material Compatibility -- 14.5.3. Thermal Compatibility -- 14.5.4. Circuit/MEMS Partitioning of Fabrication -- 14.5.5. Tooling Constraints -- 14.5.6. Circuit/MEMS Physical Partitioning -- 14.5.7. Die Separation, Assembly and Packaging -- 14.6. How Is Process Integration Performed? -- 14.6.1. Integrated MEMS Process Integration Strategies -- 14.7. Design for Manufacturability -- 14.7.1. Overview -- 14.7.2. Device Design for Manufacturability -- 14.7.3. Process Design for Manufacturability -- 14.7.4. Precision in MEMS Fabrication -- 14.7.5. Package Design and Assembly -- 14.7.6. System Design for Manufacturability -- 14.7.7. Environmental Variations -- 14.7.8. Test Variations -- 14.7.9. Recommendations Regarding Design for Manufacturability -- 14.8. Review of Existing Process Technologies for MEMS -- 14.8.1. Process Selection Guide -- 14.8.2. Nonintegrated MEMS Process Sequences -- 14.8.2.1. PolyMUMPS[™] (MEMSCAP) -- 14.8.2.2. Film Bulk Acoustic-Wave Resonators (FBARs) (Avago) -- 14.8.2.3. Summit V (Sandia) -- 14.8.2.4. Microphone (Knowles) -- 14.8.2.5. Silicon Resonator (SiTime) -- 14.8.2.6. Gyroscopes (Draper) -- 14.8.2.7. Bulk Accelerometer (STMicroelectronics) -- 14.8.2.8. Pressure Sensor (NovaSensor) --
  • Contents note continued: 14.8.2.9. Microelectronics Wafer-Bonded (Bulk) Accelerometer Process (Ford Microelectronics) -- 14.8.2.10. Single-Crystal Reactive Etching and Metallization (SCREAM) (Cornell University) -- 14.8.2.11. High-Aspect-Ratio Combined Poly and Single-Crystal Silicon (HARPSS) MEMS Technology (University of Michigan and Georgia Tech) -- 14.8.2.12. Hybrid MEMS (Infotonics) -- 14.8.2.13. Silicon-On-Glass (University of Michigan) -- 14.8.2.14. SOI MUMPS[™] (MEMSCap) -- 14.8.2.15. LIGA (CAMD, etc) -- 14.8.2.16. RF Switch (MEMStronics) -- 14.8.2.17. MetalMUMPS[™] (MEMSCap) -- 14.8.2.18. aMEMS[™] (Teledyne) -- 14.8.2.19. Plastic MEMS (University of Michigan) -- 14.8.2.20. Wafer-Level Packaging (ISSYS) -- 14.8.3. Review of Integrated CMOS MEMS Process Technologies -- 14.8.3.1. iMEMS [—] Analog Devices -- 14.8.3.2. DLP (Texas Instruments) -- 14.8.3.3. Integrated MEMS Pressure Sensor (Freescale) -- 14.8.3.4. Thermal Inkjet Printhead (Xerox) -- 14.8.3.5. Microbolometer (Honeywell) -- 14.8.3.6. ASIMPS and ASIM-X (CMU) -- 14.8.3.7. Integrated CMOS-I-RE MEMS Process (wiSpry) -- 14.8.3.8. Integrated SiGe MEMS (UCB) -- 14.8.3.9. Integrated SUMMiT (Sandia) -- 14.9. The Economic Realities of MEMS Process Development -- 14.9.1. Cost and Time for MEMS Development -- 14.9.2. Production Cost Models -- 14.9.2.1. MEMS Hybrid Versus Integrated MEMS Production Cost -- 14.10. Conclusions -- References
Control code
ocn587110610
Dimensions
24 cm
Extent
xxxv, 1187 p.
Isbn
9780387473161
Isbn Type
(hbk.)
Other physical details
ill.
System control number
(OCoLC)587110610
Label
MEMS materials and processes handbook, Reza Ghodssi, Pinyen Lin, editors
Publication
Bibliography note
Includes bibliographical references and index
Contents
  • 1.1. Introduction -- 1.1.1. Design Process -- 1.2. Design Methods for MEMS -- 1.2.1. History of Design Methodologies -- 1.2.2. Structured Design Methods for MEMS -- 1.3. Brainstorming -- 1.4. Microphone Case Studies -- 1.4.1. Microphone Background -- 1.4.2. The Avago Story -- 1.4.2.1. Design Process and Methods -- 1.4.3. The Knowles Story -- 1.4.4. Summary of Key Concepts -- 1.5. Materials and Process Selection -- 1.5.1. Materials Selection -- 1.5.2. Process Selection -- 1.6. Evaluate Concepts -- 1.6.1. Modeling -- 1.7. Optimization and Other Design Methods -- 1.7.1. De sign Optimization -- 1.7.2. Uncertainty Analysis -- 1.7.3. FMEA -- 1.7.4. Design Method Timing -- 1.8. Summary -- References -- 2.1. Overview -- 2.2. Thermal Conversion -- 2.2.1. Process Overview -- 2.2.2. Material Properties and Process Selection Guide for Thermal Oxidation of Silicon -- 2.2.3. Case Studies -- 2.3. Chemical Vapor Deposition -- 2.3.1. Process Overviews -- 2.3.1.1. Introduction -- 2.3.1.2. Low Pressure Chemical Vapor Deposition -- 2.3.1.3. Plasma-Enhanced Chemical Vapor Deposition -- 2.3.1.4. Atmospheric Pressure Chemical Vapor Deposition -- 2.3.1.5. Hot Filament Chemical Vapor Deposition -- 2.3.1.6. Microwave Plasma Chemical Vapor Deposition -- 2.3.2. LPCVD Polycrystalline Silicon -- 2.3.2.1. Material Properties and Process Generalities -- 2.3.2.2. Process Selection Guidelines -- 2.3.2.3. Case Studies -- 2.3.3. LPCVD Silicon Dioxide -- 2.3.3.1. Material Properties and Process Generalities -- 2.3.3.2. Process Selection Guidelines -- 2.3.3.3. Case Studies -- 2.3.4. LPCVD Silicon Nitride -- 2.3.4.1. Material Properties and Process Generalities -- 2.3.4.2. Process Selection Guidelines -- 2.3.4.3. Case Studies -- 2.3.5. LPCVD Polycrystalline SiGe and Ge -- 2.3.5.1. Material Properties and Process Generalities -- 2.3.5.2. Process Selection Guidelines -- 2.3.6. LPCVD Polycrystalline Silicon Carbide -- 2.3.6.1. Material Properties and Process Generalities -- 2.3.6.2. Process Selection Guidelines -- 2.3.6.3. Case Studies -- 2.3.7. LPCVD Diamond -- 2.3.7.1. Material Properties and Process Generalities -- 2.3.7.2. Process Selection Guidelines -- 2.3.7.3. Case Studies -- 2.3.8. APCVD Polycrystalline Silicon Carbide -- 2.3.8.1. Material Properties and Process Generalities -- 2.3.8.2. Process Selection Guidelines -- 2.3.9. PECVD Silicon -- 2.3.9.1. Material Properties and Process Generalities -- 2.3.9.2. Process Selection Guidelines -- 2.3.10. PECVD Silicon Dioxide -- 2.3.10.1. Material Properties and Process Generalities -- 2.3.10.2. Process Selection Guidelines -- 2.3.11. PECVD Silicon Nitride -- 2.3.11.1. Material Properties and Process Generalities -- 2.3.11.2. Process Selection Guidelines -- 2.3.12. PECVD Silicon Germanium -- 2.3.12.1. Material Properties and Process Generalities -- 2.3.12.2. Process Selection Guidelines -- 2.3.12.3. Case Studies -- 2.3.13. PECVD Silicon Carbide -- 2.3.13.1. Material Properties and Process Generalities -- 2.3.13.2. Process Selection Guidelines -- 2.3.13.1. Case Studies -- 2.3.14. PECVD Carbon-Based Films -- 2.3.14.1. Material Properties and Process Generalities -- 2.3.14.2. Process Selection Guidelines -- 2.4. Epitaxy -- 2.4.1. Process Overviews -- 2.4.2. Epi-Polysilicon -- 2.4.2.1. Material Properties and Process Generalities -- 2.4.2.2. Process Selection Guidelines -- 2.4.2.3. Case Studies -- 2.4.3. Epitaxial Silicon Carbide -- 2.4.3.1. Material Properties and Process Generalities -- 2.4.3.2. Process Selection Guidelines -- 2.4.3.3. Case Studies -- 2.4.4. III-V Materials and Gallium Nitride -- 2.4.4.1. Material Properties and Process Generalities -- 2.4.4.2. Process Selection Guidelines -- 2.4.4.3. Case Studies -- 2.5. Physical Vapor Deposition -- 2.5.1. Process Overviews -- 2.5.2. Sputter-Deposited Si -- 2.5.2.1. Material Properties and Process Generalities -- 2.5.2.2. Process Selection Guidelines -- 2.5.3. Sputter-Deposited SiC -- 2.5.4. Sputter-Deposited Si02 -- 2.5.5. Sputter-Deposited Diamondlike Carbon -- 2.5.6. Carbon Films Deposited by Pulsed Laser Deposition -- 2.6. Atomic Layer Deposition -- 2.6.1. Process Overview -- 2.6.2. Process Selection Guidelines and Material Properties -- 2.7. Spin-On Films -- References -- 3.1. Introduction -- 3.1.1. Overview -- 3.1.2. Fabrication Tradeoffs -- 3.2. Physical Vapor Deposition -- 3.2.1. Evaporation -- 3.2.1.1. Thermal Evaporation -- 3.2.1.2. E-Beam Evaporation -- 3.2.1.3. Issues with Alloys -- 3.2.2. Sputtering -- 3.2.2.1. DC Sputtering -- 3.2.2.2. RF Sputtering -- 3.2.2.3. Step Coverage -- 3.2.2.4. Other Issues in Sputtering -- 3.2.3. Pulsed Laser Deposition -- 3.3. Electrochemical Deposition -- 3.3.1. Electroplating -- 3.3.1.1. Electrochemical Reactions -- 3.3.1.2. Deposition Process -- 3.3.1.3. Overpotential -- 3.3.1.4. Bath Composition -- 3.3.1.5. Current Waveform -- 3.3.1.6. Equipment -- 3.3.1.7. Process Flow -- 3.3.1.8. Nickel -- 3.3.1.9. Copper -- 3.3.1.10. Gold -- 3.3.1.11. Nickel Alloys -- 3.3.2. Electroless Plating -- 3.3.2.1. Nickel -- 3.3.2.2. Copper -- 3.3.2.3. Gold -- 3.3.3. Comparison of Electroplating and Electroless Plating -- 3.4. LIGA and UV-LIGA Processes -- 3.4.1. Process Explanation -- 3.4.2. Electroplating in LIGA and UV-LIGA Microstructures -- 3.4.3. Multilevel Metal Structures -- 3.5. Materials Properties and Process Selection Guidelines for Metals -- 3.5.1. Adhesion -- 3.5.2. Electrical Properties -- 3.5.3. Mechanical Properties -- 3.5.4. Thermal Properties -- 3.5.5. Magnetic Properties -- References -- 4.1. SU-8 -- 4.1.1. Material Properties -- 4.1.2. Processing Variations -- 4.1.2.1. Partial Exposure -- 4.1.2.2. Direct Writing -- 4.1.2.3. Removal of SU-8 -- 4.1.2.4. Release of SU-8 -- 4.1.2.5. Bonding -- 4.1.2.6. Transfer -- 4.1.2.7. SU-8 as an Etch Mask -- 4.1.3. Lessons Learned -- 4.1.4. Examples of SU-8 Application -- 4.2. PDMS -- 4.2.1. Material Properties -- 4.2.2. Processing Techniques -- 4.2.3. Biological Application Guide -- 4.2.3.1. Stamp Material for Protein Transfer: Microcontact Printing -- 4.2.3.2. Microfluidic Devices -- 4.2.4. Case Study -- 4.3. Polyimide -- 4.3.1. Material Properties -- 4.3.2. Processing Variations -- 4.3.2.1. Removal of Polyimide -- 4.3.2.2. Release of Polyimide -- 4.3.2.3. Bonding -- 4.3.3. Lessons Learned -- 4.3.4. Case Study -- 4.4. Hydrogels -- 4.4.1. Gelatin -- 4.4.2. Chitosan -- 4.4.3. Polyethylene Glycol -- 4.4.4. Case Studies -- 4.5. Parylene -- 4.5.1. Material Properties -- 4.5.2. Processing Techniques -- 4.5.3. Lessons Learned -- 4.5.4. Case Study -- 4.6. Conductive Polymers -- 4.6.1. Material Properties -- 4.6.2. Actuation Mechanism and Theories -- 4.6.3. Applications -- 4.6.3.1. Actuators -- 4.6.3.2. Conducting Polymer as a Strain Gauge Material -- 4.6.4. Processing Techniques -- 4.6.4.1. Deposition -- 4.6.4.2. Patterning -- 4.6.4.3. Release -- 4.6.4.4. Process Considerations -- 4.6.5. Case Study -- 4.7. Other Polymers -- 4.7.1. Benzocyclobutene -- 4.7.2. Liquid Crystal Polymer -- 4.8. Polymers for Embossing and Molding -- 4.8.1. Technical Overview -- 4.8.2. Substrate Material Selection -- 4.8.2.1. Polymethylmethacrylate -- 4.8.2.2. Polycarbonate -- 4.8.2.3. Polytetrafluoroethylene -- 4.8.2.4. Cyclic Olefin Copolymer -- 4.8.3. Tool Selection -- 4.8.4. Mold Material Selection and Fabrication -- 4.8.4.1. Silicon -- 4.8.4.2. Nickel -- 4.8.4.3. SU-8 -- 4.8.5. Conventional Machining of Molds -- 4.8.5.1. Milling -- 4.8.5.2. Laser -- 4.8.5.3. Focused Ion Beam -- 4.8.5.4. Fixture of Molds -- 4.8.5.5. Release Coatings -- 4.8.6. Process Development -- 4.8.7. Minimum Substrate Thickness -- 4.9. Materials Properties -- References -- 5.1. Introduction to Piezoelectric Thin Films -- 5.1.1. Direct and Converse Piezoelectricity -- 5.1.2. Materials [—] Ferroelectrics and Nonferroelectrics -- 5.1.3. Fundamental Design Equations and Models -- 5.1.3.1. Linear Constitutive Equations of Piezoelectricity -- 5.1.3.2. Electromechanical Coupling Factors -- 5.1.3.3. Influence of Boundary Conditions -- 5.1.3.4. Device Configurations -- 5.1.3.5. Free Strain and Blocking Force -- 5.1.3.6. Cantilever Unimorph Model -- 5.1.3.7. Actuator Force Generation Against External Loads -- 5.1.3.8. Piezoelectric Sensing -- 5.1.3.9. Equivalent Circuit Models -- 5.1.3.10. Thin-Film Ferroelectric Nonlinearity -- 5.1.3.11. Heat Generation -- 5.1.4. Materials Selection Guide -- 5.1.5. Applications -- 5.2. Polar Materials: A1N and ZnO -- 5.2.1. Material Deposition -- 5.2.2. Patterning Techniques -- 5.2.3. Device-Design Concerns -- 5.2.4. Device Examples -- 5.2.5. Case Study -- 5.3. Ferroelectrics: PZT -- 5.3.1. Material Deposition -- 5.3.2. Patterning Techniques -- 5.3.3. Device Design Concerns -- 5.3.4. Device Examples -- 5.3.5. Case Study on the Design and Processing of a RF MEMS Switch Using PZT Thin-Film Actuators -- 5.4. Summary -- References -- 6.1. Introduction and Principle -- 6.1.1. Basic Principle -- 6.1.2. Introduction of TiNi and TiNi-Base Ternary Alloys -- 6.1.3. Super-Elasticity -- 6.1.4. One-Way Type, Two-Way Type, All-Round-Way Type -- 6.2. Materials Properties and Fabrication Process of SMA Actuators -- 6.2.1. Bulk Material -- 6.2.2. Thin Film -- 6.2.2.1. Sputtering --
  • Contents note continued: 6.2.2.2. Evaporation -- 6.2.2.3. Non-planar Thin Film Deposition -- 6.2.3. Micromachining -- 6.2.4. Etching and Lift-Off -- 6.2.4.3. Case and Example -- 6.2.5. Assembly -- 6.2.5.1. Mechanical Fixation -- 6.2.5.2. Adhesion -- 6.2.5.3. Welding -- 6.2.5.4. Soldering -- 6.2.6. Materials and Processes Selection Guidance -- 6.2.6.1. Materials (Bulk/Thin Film) -- 6.2.6.2. Process -- 6.3. Applications and Devices -- 6.3.1. Medical -- 6.3.1.1. Stents -- 6.3.1.2. Endoscopes -- 6.3.1.3. Catheters -- 6.3.1.4. Micro Clips and Grippers -- 6.3.2. Fluidic Devices -- 6.3.3. Optical Fiber Switch -- 6.3.4. Tactile Pin Display -- 6.3.5. AFM Cantilever -- 6.3.6. Case Studies and Lessons Learned -- 6.3.6.1. Designs -- 6.3.6.2. Heating and Cooling -- 6.4. Summary -- References -- 7.1. Dry Etching -- 7.1.1. Etch Metrics -- 7.2. Plasma Etching -- 7.2.1. Types of Etching -- 7.2.2. Plasma Sources -- 7.3. Plasma Process Parameters and Control -- 7.3.1. Energy-Driven Anisotropy -- 7.3.2. Inhibitor-Driven Anisotropy -- 7.3.3. Selectivity in Plasma Etching -- 7.4. Case Study: Etching Silicon, Silicon Dioxide, and Silicon Nitride -- 7.5. Case Study: High-Aspect-Ratio Silicon Etch Process -- 7.5.1. Cryogenic Dry Etching -- 7.5.2. Bosch Process -- 7.5.3. Understanding Trends for DRIE Recipe Development -- 7.6. High-Aspect-Ratio Etching of Piezoelectric Materials -- 7.6.1. Case Study: High-Aspect-Ratio Etching of Glass (Pyrex®) and Quartz -- 7.6.2. High-Aspect-Ratio Etching of Piezoelectric Materials -- 7.7. Etching of Compound Semiconductors -- 7.7.1. Case Study: Etching of GaAs and AIGaAs -- 7.7.2. Case Study: Etching of InP, InGaAs, InSb, and InAs -- 7.8. Case Study: Ion Beam Etching -- 7.9. Summary -- References -- 8.1. Introduction -- 8.2. Principles and Process Architectures for Wet Etching -- 8.2.1. Surface Reactions and Reactant/Product Transport -- 8.2.2. Etchant Selectivity and Masking Considerations -- 8.2.3. Direct Etching and Liftoff Techniques -- 8.2.4. Sacrificial Layer Removal -- 8.2.5. Substrate Thinning and Removal -- 8.2.6. Impact on Process Architecture -- 8.2.7. Process Development for Wet Etches -- 8.2.8. Additional Considerations and Alternatives -- 8.3. Evaluation and Development of Wet-Etch Facilities and Procedures -- 8.3.1. Facility Requirements -- 8.3.1.1. General Facilities -- 8.3.1.2. Wet-Bench Services -- 8.3.1.3. Wet-Bench Equipment -- 8.3.1.4. Safety -- 8.3.2. Wafer Handling Considerations -- 8.3.3. Safety Concerns -- 8.3.4. Training -- 8.4. IC-Compatible Materials and Wet Etching -- 8.4.1. Oxide and Dielectric Etching -- 8.4.2. Silicon, Polysilicon, and Germanium Isotropic Etching -- 8.4.3. Standard Metal Etching -- 8.4.4. Photoresist Removal Techniques and Wafer Cleaning Processes -- 8.4.5. Examples: Wet Chemical Etching of IC-Compatible Materials -- 8.4.5.1. Example 1: Wet Etch of Low-Temperature Oxide -- 8.4.5.2. Example 2: Wet Etch of Silicon Nitride on Silicon -- 8.4.5.3. Example 3: Sacrificial Etch of Deposited Polysilicon Under a Structural Layer of Stress-Controlled Silicon Nitride -- 8.4.5.4. Example 4: Aluminum Etching over Patterned Nitride, Oxide, and Silicon -- 8.4.5.5. Example 5: Junction Depth Determination for an Integrated MEMS Device -- 8.5. Nonstandard Materials and Wet Etching -- 8.5.1. Nonstandard Dielectric, Semiconductor, and Metal Etching -- 8.5.2. Plastic and Polymer Etching -- 8.5.3. Examples: Wet Chemical Etching of Nonstandard Materials -- 8.5.3.1. Example 1: BCB Patterning and Etching -- 8.5.3.2. Example 2: COC Patterning and Solvent Bonding -- 8.5.3.3. Example 3: LIGA Mold Removal -- 8.6. Anisotropic Silicon Etching and Silicon Etch Stops -- 8.6.1. Anisotropic Etching of Silicon -- 8.6.2. Heavily Doped Silicon Etch Stops -- 8.6.3. Lightly Doped Silicon and Silicon[–]Germanium Etch Stops -- 8.6.4. Ion-Implanted Silicon Etch Stops -- 8.6.5. Electrochemical Etching and Electrochemical Etch Stops -- 8.6.6. Photoassisted Silicon Etching and Etch Stops -- 8.6.7. Thin-Film Etch Stops -- 8.6.8. Examples: Wet Chemical and Electrochemical Etch Stops -- 8.6.8.1. Example 1: Anisotropic Silicon Etching of an SOI Wafer -- 8.6.8.2. Example 2: Heavy Boron-Doped Etch Stop -- 8.6.8.3. Example 3: Electrochemical Etch Stop -- 8.7. Sacrificial Layer Etching -- 8.7.1. Sacrificial Layer Removal Techniques -- 8.7.2. Sacrificial Oxide Removal for Polysilicon Microstructures -- 8.7.3. Alternative Sacrificial and Structural Layer Combinations -- 8.7.4. Etch Accelerator Layers for Enhanced Sacrificial Layer Removal -- 8.7.5. Rinse Liquid Removal and Antistiction Coatings -- 8.7.6. Examples: Sacrificial Layer Removal and Structural Layer Release -- 8.7.6.1. Example 1: Fine-Grain Stress-Controlled Polysilicon with an Oxide Sacrificial Layer -- 8.7.6.2. Example 2: Poly-SiGe on a Patterned Oxide/Nitride Laminate -- 8.7.6.3. Example 3: Silicon Nitride on a Polysilicon Sacrificial Layer -- 8.7.6.4. Example 4: Aluminum on Photoresist -- 8.8. Porous Silicon Formation with Wet Chemistry -- 8.8.1. Nanoporous, Mesoporous, and Macroporous Silicon Formation -- 8.8.2. Selective Porous Silicon Removal -- 8.8.3. Examples: Porous Silicon Formation -- 8.8.3.1. Example 1: Chemical Porous Silicon Formation -- 8.8.3.2. Example 2: Nanoporous Silicon Formation -- 8.8.3.3. Example 3: Mesoporous Silicon Formation -- 8.8.3.4. Example 4: Macroporous Silicon Formation -- 8.9. Layer Delineation and Defect Determination with Wet Etchants -- 8.9.1. Dopant Level and Defect Determination with Wet Etchants -- 8.9.2. Layer Delineation with Wet Etchants -- 8.9.3. Examples: Layer Delineation and Defect Determination -- 8.9.3.1. Example 1: Metallurgical Junction Determination -- 8.9.3.2. Example 2: Cross-Sectioning and Layer Delineation -- References -- 9.1. Overview -- 9.2. UV Lithography -- 9.2.1. Photo Masks -- 9.2.2. Optical Projection Systems -- 9.2.2.1. Contact Aligner -- 9.2.2.2. Stepper -- 9.2.3. Photoresist -- 9.2.3.1. Positive Photoresist -- 9.2.3.2. Negative Photoresist -- 9.2.3.3. Image Reversal for Positive Resist (Converting Positive Resist into a Negative Resist) -- 9.2.4. Substrate -- 9.2.5. Processing Steps for UV Lithography -- 9.2.5.1. Deposit Photoresist -- 9.2.5.2. Expose Photoresist -- 9.2.5.3. Develop Photoresist -- 9.2.5.4. Transfer Pattern -- 9.2.5.5. Remove Photoresist -- 9.3. Grayscale Lithography -- 9.3.1. Photomask Pixelation -- 9.3.2. Photoresist Properties for Grayscale Lithography -- 9.3.2.1. Contrast and Thickness -- 9.3.2.2. Exposure and Developing Times -- 9.3.2.3. Etch Selectivity -- 9.4. X-Ray Lithography -- 9.4.1. X-Ray Masks -- 9.4.2. X-Ray Photoresists -- 9.4.3. Exposure -- 9.4.4. Development -- 9.5. Direct-Write Lithography -- 9.5.1. E-Beam Lithography -- 9.5.2. Ion Beam Lithography and Focused Ion Beam (FIB) -- 9.5.3. Gas-Assisted Electron and Ion Beam Lithography -- 9.5.4. Dip-Pen Lithography (DPN) -- 9.5.5. Direct-Write Laser -- 9.5.6. Stereolithography and Microstereolithography -- 9.6. Print/Imprint Lithography -- 9.6.1. Inkjet Printing -- 9.6.2. Soft Lithography -- 9.6.3. Nanoimprint Lithography (NIL) -- 9.6.4. Transfer Printing -- 9.7. Case Studies -- 9.7.1. Case Study 1: Substrate Cleaning-RCA Clean(s) -- 9.7.1.1. Recipe Steps -- 9.7.1.2. Notes -- 9.7.2. Case Study 2: Substrate Cleaning, O2 Plasma Clean -- 9.7.2.1. Recipe Steps -- 9.7.2.2. Note -- 9.7.3. Case Study 3: Substrate Cleaning, Solvent Clean -- 9.7.3.1. Recipe Steps -- 9.7.3.2. Note -- 9.7.4. Case Study 4: Positive Photoresist Processing: General Processing for Shipley 1800 Series Photoresist -- 9.7.4.1. Recipe Steps -- 9.7.5. Case Study 5: Positive Photoresist Processing: Specific Processing for Shipley S1813 -- 9.7.5.1. Recipe Steps -- 9.7.6. Case Study 6: Positive Photoresist Processing: Specific Processing for OiR 906-10 -- 9.7.6.1. Recipe Steps -- 9.7.6.2. Notes -- 9.7.7. Case Study 7: Negative Photoresist Processing: Specific Processing for NR7-1500PY -- 9.7.7.1. Recipe Steps -- 9.7.7.2. Note 1 -- 9.7.7.3. Note 2 -- 9.7.8. Case Study 8: E-Beam Lithography -- 9.7.8.1. Notes on Using the NPGS Software -- 9.7.9. Case Study 9: Fabrication of PDMS Templates -- 9.7.10. Case Study 10: Photomask Fabrication [226, 227] -- 9.7.10.1. Photomask Defects -- 9.7.10.2. Grayscale Lithography Pixelated Photomasks -- 9.7.10.3. Mask Manufacturers -- 9.7.11. Case Study 11: Multiphoton Absorption Polymerization (MAP) -- 9.7.12. Case Study 12: Lithography Using Focused Ion Beams -- References -- 10.1. Overview -- 10.2. Applications -- 10.2.1. Electrical Properties -- 10.2.2. Etch Stop Techniques -- 10.2.3. Materials and Process Selection Guidelines: Etch Stop Techniques -- 10.3. In Situ Doping -- 10.3.1. Chemical Vapor Deposition -- 10.3.2. Crystal Growth and Epitaxy -- 10.4. Diffusion -- 10.4.1. Gas Phase Diffusion -- 10.4.2. Solid State Diffusion -- 10.4.3. Masking Materials -- 10.4.4. Modeling -- 10.5. Ion Implantation -- 10.5.1. Equipment -- 10.5.2. Masking Materials -- 10.5.3. Modeling -- 10.5.4. Crystal Damage -- 10.5.5. Buried Insulator Layers -- 10.5.6. Case Study: Heavily Doped Polysilicon -- 10.6. Plasma Doping Processes -- 10.7. Dopant Activation Methods -- 10.7.1. Conventional Annealing Methods -- 10.7.2. Rapid Thermal Processes -- 10.7.3. Low-Temperature Activation -- 10.7.4. Process Selection Guide: Dopant Activation --
  • Contents note continued: 10.7.5. Case Study: Rapid Thermal Anneal Versus Conventional Thermal Anneal -- 10.8. Diagnostics -- 10.8.1. Electrical Measurements -- 10.8.2. Junction Staining Techniques -- 10.8.3. SIMS -- 10.8.4. Case Study: Characterizing Junctions and Diagnosing Implant Anomalies -- References -- 11.1. Introduction -- 11.2. Direct Wafer Bonding -- 11.2.1. Background and Physics -- 11.2.2. Parameters for Successful Direct Wafer Bonding -- 11.2.2.1. Surface Roughness -- 11.2.2.2. Waviness or Nanotopography -- 11.2.2.3. Wafer Shape -- 11.2.3. Recommendations for Successful Direct Wafer Bonding -- 11.2.4. Procedure of Direct Wafer Bonding -- 11.2.4.1. Surface Preparation for Direct Wafer Bonding -- 11.2.4.2. Bonding Step [—] By Hand or by Using a Wafer Bonding Tool -- 11.2.4.3. Basic Operation Principle of a Wafer Bonding Tool -- 11.2.4.4. Inspection Before Heat Treatment -- 11.2.4.5. Thermal Treatment to Increase the Bond Strength -- 11.2.4.6. Remaining Fabrication Process for MEMS Device -- 11.2.5. Anodic Bonding -- 11.2.6. Silicon[—]Glass Laser Bonding -- 11.3. Wafer Bonding with Intermediate Material -- 11.3.1. Thermocompression Bonding -- 11.3.2. Eutectic Bonding -- 11.3.3. Polymer Bonding -- 11.4. Direct Comparison of Wafer Bonding Techniques -- 11.5. Bonding of Heterogeneous Compounds -- 11.6. Wafer Bonding Process Integration -- 11.6.1. Localized Wafer Bonding -- 11.6.2. Through Wafer via Technology -- 11.7. Characterization Techniques for Wafer Bonding -- 11.8. Existing Wafer Bonding Infrastructure -- 11.8.1. Wafer Bonding Services -- 11.8.2. Bonding Tool Vendors -- 11.8.2.1. Applied Microengineering Ltd (AML), UK -- 11.8.2.2. EV Group (EVG), Austria -- 11.8.2.3. Mitsubishi Heavy Industries Ltd. (MHI), Japan -- 11.8.2.4. SUSS MicroTec AG, Germany -- 11.9. Summary and Outlook -- References -- 12.1. MEMS Packages and Applications -- 12.1.1. Packaging Classes -- 12.1.2. MEMS Versus Microcircuit or Integrated Circuit Packaging -- 12.1.3. Application Drivers and Interfaces -- 12.1.4. Interfaces to Other System Components -- 12.1.4.1. Power and Signals Interface -- 12.1.4.2. Optical Interface -- 12.1.4.3. Microfluidic Interface -- 12.1.4.4. Environmental Interface -- 12.2. Package Selection -- 12.2.1. Metal -- 12.2.2. Ceramic -- 12.2.3. Plastic -- 12.2.4. Array Packaging Materials/Wafer Level Packaging -- 12.2.5. Custom Packaging -- 12.2.6. Silicon Encapsulation -- 12.2.7. Glass Encapsulation -- 2.3. Lids and Lid Seals -- 12.3.1. Optical Applications -- 12.4. Die Attach Materials and Processes -- 12.4.1. Conductive Die Attach -- 12.4.2. Metal-Filled Glasses and Epoxies -- 12.4.3. Other Die Attach Materials -- 12.4.4. Flip-Chip Bonding -- 12.4.5. Tape Interconnects -- 12.5. Wire Bonding -- 12.5.1. Gold Wire Bonding -- 12.5.1.1. Au-Al System -- 12.5.1.2. Au-Ag System -- 12.5.1.3. Au-Au System -- 12.5.1.4. Au-Cu System -- 12.5.2. Aluminum Systems -- 12.5.2.1. Al-Al System -- 12.5.2.2. Al-Ag System -- 12.5.2.3. Al-Ni System -- 12.5.3. Copper Systems -- 12.6. Electrical Connection Processes -- 12.7. Encapsulation -- 12.7.1. Polyurethane -- 12.7.2. Polyimide -- 12.7.3. Polydimethylsiloxane (PDMS) -- 12.7.4. Epoxy -- 12.7.5. Fluorocarbon (Polytetrafluoroethylene) -- 12.7.6. Acrylic (PMMA) -- 12.7.7. Parylene -- 12.7.8. Liquid Crystal Polymer -- 12.8. Electrical and Thermal Requirements -- 12.8.1. Electrical Considerations -- 12.8.2. Thermal Considerations -- 12.9. Hermeticity and Getter Materials -- 12.9.1. Hermeticity and Pressurized Packaging -- 12.9.2. Hermeticity and Vacuum Packaging -- 12.10. Quality and Reliability -- 12.10.1. MEMS Packaging Reliability Concerns -- 12.10.1.1. Thermal Effects -- 12.10.1.2. Shock and Vibration -- 12.10.1.3. Humidity -- 12.10.2. MEMS Packaging and Quality Assurance -- 12.11. Case Studies -- 12.11.1. MEMS Accelerometer -- 12.11.2. Micro-mirror Array -- 12.11.3. MEMS Microphone -- 12.11.4. MEMS Shutters -- 12.12. Summary -- References -- 13.1. Release Processes and Surface Treatments to Prevent Stiction -- 13.1.1. Wet Chemical Release Techniques -- 13.1.2. Dry Release Techniques -- 13.2. Surface Analysis -- 13.2.1. Surface Chemical Composition -- 13.2.1.1. X-Ray Photoelectron Spectroscopy (XPS or ESCA) -- 13.2.1.2. Scanning Auger Electron Spectroscopy (AES) -- 13.2.1.3. Energy Dispersive X-Ray Spectroscopy (EDS or EDX) -- 13.2.1.4. Secondary Ion Mass Spectroscopy (SIMS) -- 13.2.2. Surface Structure and Morphology -- 13.2.2.1. Atomic Force Microscopy (AFM) -- 13.2.2.2. Scanning Electron Microscopy (SEM) -- 13.2.3. Surface Energy Measurements -- 13.3. Adhesion and Friction of MEMS -- 13.3.1. Measurements of Adhesion and Friction -- 13.3.1.1. Cantilever Beam Array Technique -- 13.3.1.2. Double-Clamped Beam Array Technique -- 13.3.1.3. Friction Test Structures -- 13.3.2. Effects of Surface Roughness -- 13.4. Chemical Modification of MEMS Surfaces -- 13.4.1. Treatments for Low Surface Energy -- 13.4.2. Siloxane and Silane Treatments -- 13.4.3. Weakly Chemisorbed Surfactant Films -- 13.4.4. Materials Properties and Process Selection Guidance -- 13.5. Surface Considerations for Biological Applications -- 13.5.1. Surface Modification Techniques -- 13.5.2. Modification of Pristine Substrate Surfaces -- 13.5.2.1. Plasma Treatment -- 13.5.2.2. Physical Adsorption -- 13.5.2.3. Covalent Linkage -- 13.5.3. Modification of Pre-treated Substrate Surfaces -- 13.5.3.1. Chemistry of Hydroxyl Groups (R-OH: Alcohols) -- 13.5.3.2. Chemistry of Amino Groups (R[–]NH2: Amines) -- 13.5.3.3. Chemistry of Carboxyl Groups (R[–]COOH: Carboxylic Acids) -- 13.5.3.4. Chemistry of Mercapto Groups (R[–]SH; Thiols) -- 13.5.3.5. Chemistry of Formyl Groups (R[–]CHO: Aldehydes) -- 13.5.4. Case Studies -- 13.5.4.1. Case Study 1: Promotion of Immobilized Bioactive Proteins Biological Activity -- 13.5.4.2. Case Study 2: Effective Enhancement of Fluorescence Detection Efficiency Using Alternative Blocking Process in Protein Microarray Assays -- 13.5.4.3. Case Study 3: Control of Specific Reaction Kinetics Involving Bifunctional Cross-Linkers -- 13.5.4.4. Case Study 4: Surface Modification Using Elaborately Derivatized Functional Groups -- 13.5.4.5. Case Study 5: Surface Patterning by Microcontact Printing -- 13.6. Surface Coating for Optical Applications -- 13.6.1. Fundamentals of Optical Phenomena on Surface Coatings -- 13.6.1.1. Index Variation of Materials Versus Wavelength [108] -- 13.6.1.2. Fresnel Equation for Reflection [108] -- 13.6.1.3. Principle of Antireflection (AR) [108] -- 13.6.1.4. Principle of Absorption [108, 109] -- 13.6.1.5. Surface Plasmon Resonance -- 13.6.2. Material Properties and Process Selection Guidelines -- 13.6.2.1. High Reflection Applications -- 13.6.2.2. Antirellection Applications -- 13.6.2.3. Considerations for Surface Smoothness and Roughness -- 13.6.2.4. Polymer Materials for Optical Applications -- 13.6.2.5. Surface Coatings for Polymer Materials -- 13.6.2.6. Applications for Light Absorption -- 13.7. Chemical Mechanical Planarization -- 13.7.1. Overview -- 13.7.1.1. Chemistry of CMP -- 13.7.1.2. Mechanics of CMP -- 13.7.2. Applications -- 13.7.2.1. Smoothing and Local Planarization -- 13.7.2.2. Global Planarization -- 13.7.2.3. Trench Fill -- 13.7.3. Pads and Slurry -- 13.7.3.1. Summary of Slurry and Pad -- 13.7.4. Polishing Considerations for Different Materials -- 13.7.4.1. Rate Comparison and Selectivity -- 13.7.4.2. Dielectrics -- 13.7.4.3. Metals -- 13.7.4.4. Polymers -- 13.7.5. Cleaning and Contamination Control -- 13.7.6. Case Study -- 13.7.6.1. Case Study 10: Magnetic Microdevice -- 13.7.6.2. Case Study 11: A Drug-Delivery Probe with an In-line Flow Meter -- 13.7.6.3. Case Study 12: Nanomechanical Optical Devices -- 13.7.6.4. Case Study 13: CMP of SU-8/Permalloy Combination in MEMS Devices -- References -- 14.1. Introduction -- 14.2. What Is Process Integration? -- 14.3. What Is an Integrated MEMS Process? -- 14.4. Differences Between IC and MEMS Fabrication -- 14.5. Challenges of MEMS Process Integration -- 14.5.1. Topography -- 14.5.2. Material Compatibility -- 14.5.3. Thermal Compatibility -- 14.5.4. Circuit/MEMS Partitioning of Fabrication -- 14.5.5. Tooling Constraints -- 14.5.6. Circuit/MEMS Physical Partitioning -- 14.5.7. Die Separation, Assembly and Packaging -- 14.6. How Is Process Integration Performed? -- 14.6.1. Integrated MEMS Process Integration Strategies -- 14.7. Design for Manufacturability -- 14.7.1. Overview -- 14.7.2. Device Design for Manufacturability -- 14.7.3. Process Design for Manufacturability -- 14.7.4. Precision in MEMS Fabrication -- 14.7.5. Package Design and Assembly -- 14.7.6. System Design for Manufacturability -- 14.7.7. Environmental Variations -- 14.7.8. Test Variations -- 14.7.9. Recommendations Regarding Design for Manufacturability -- 14.8. Review of Existing Process Technologies for MEMS -- 14.8.1. Process Selection Guide -- 14.8.2. Nonintegrated MEMS Process Sequences -- 14.8.2.1. PolyMUMPS[™] (MEMSCAP) -- 14.8.2.2. Film Bulk Acoustic-Wave Resonators (FBARs) (Avago) -- 14.8.2.3. Summit V (Sandia) -- 14.8.2.4. Microphone (Knowles) -- 14.8.2.5. Silicon Resonator (SiTime) -- 14.8.2.6. Gyroscopes (Draper) -- 14.8.2.7. Bulk Accelerometer (STMicroelectronics) -- 14.8.2.8. Pressure Sensor (NovaSensor) --
  • Contents note continued: 14.8.2.9. Microelectronics Wafer-Bonded (Bulk) Accelerometer Process (Ford Microelectronics) -- 14.8.2.10. Single-Crystal Reactive Etching and Metallization (SCREAM) (Cornell University) -- 14.8.2.11. High-Aspect-Ratio Combined Poly and Single-Crystal Silicon (HARPSS) MEMS Technology (University of Michigan and Georgia Tech) -- 14.8.2.12. Hybrid MEMS (Infotonics) -- 14.8.2.13. Silicon-On-Glass (University of Michigan) -- 14.8.2.14. SOI MUMPS[™] (MEMSCap) -- 14.8.2.15. LIGA (CAMD, etc) -- 14.8.2.16. RF Switch (MEMStronics) -- 14.8.2.17. MetalMUMPS[™] (MEMSCap) -- 14.8.2.18. aMEMS[™] (Teledyne) -- 14.8.2.19. Plastic MEMS (University of Michigan) -- 14.8.2.20. Wafer-Level Packaging (ISSYS) -- 14.8.3. Review of Integrated CMOS MEMS Process Technologies -- 14.8.3.1. iMEMS [—] Analog Devices -- 14.8.3.2. DLP (Texas Instruments) -- 14.8.3.3. Integrated MEMS Pressure Sensor (Freescale) -- 14.8.3.4. Thermal Inkjet Printhead (Xerox) -- 14.8.3.5. Microbolometer (Honeywell) -- 14.8.3.6. ASIMPS and ASIM-X (CMU) -- 14.8.3.7. Integrated CMOS-I-RE MEMS Process (wiSpry) -- 14.8.3.8. Integrated SiGe MEMS (UCB) -- 14.8.3.9. Integrated SUMMiT (Sandia) -- 14.9. The Economic Realities of MEMS Process Development -- 14.9.1. Cost and Time for MEMS Development -- 14.9.2. Production Cost Models -- 14.9.2.1. MEMS Hybrid Versus Integrated MEMS Production Cost -- 14.10. Conclusions -- References
Control code
ocn587110610
Dimensions
24 cm
Extent
xxxv, 1187 p.
Isbn
9780387473161
Isbn Type
(hbk.)
Other physical details
ill.
System control number
(OCoLC)587110610

Library Locations

    • Manawatū LibraryBorrow it
      Tennent Drive, Palmerston North, Palmerston North, 4472, NZ
      -40.385340 175.617349
Processing Feedback ...