Coverart for item
The Resource Linear genetic programming, Markus Brameier, Wolfgang Banzhaf, (electronic resource)

Linear genetic programming, Markus Brameier, Wolfgang Banzhaf, (electronic resource)

Label
Linear genetic programming
Title
Linear genetic programming
Statement of responsibility
Markus Brameier, Wolfgang Banzhaf
Creator
Contributor
Subject
Language
eng
Member of
http://library.link/vocab/creatorName
Brameier, Markus
Dewey number
006.3/1
Illustrations
illustrations
Index
index present
Literary form
non fiction
Nature of contents
  • dictionaries
  • bibliography
http://library.link/vocab/relatedWorkOrContributorDate
1955-
http://library.link/vocab/relatedWorkOrContributorName
Banzhaf, Wolfgang
Series statement
Genetic and evolutionary computation series
http://library.link/vocab/subjectName
  • Genetic programming (Computer science)
  • Linear programming
Label
Linear genetic programming, Markus Brameier, Wolfgang Banzhaf, (electronic resource)
Instantiates
Publication
Bibliography note
Includes bibliographical references (p. [291]-302) and index
Contents
About the authors -- 1. Introduction -- 1.1 Evolutionary algorithms -- 1.2 Genetic programming -- 1.3 Linear genetic programming -- 1.4 Motivation -- Part I. Fundamental analysis -- 2. Basic concepts of linear genetic programmning -- 2.1 Representation of programs -- 2.2 Execution of programs -- 2.3 Evolution of programs -- 3. Characteristics of the linear representation -- 3.1 Effective code and noneffective code -- 3.2 Structural introns and semantic introns -- 3.3 Graph interpretation -- 3.4 Analysis of program structure -- 3.5 Graph evolution -- 3.6 Summary and conclusion -- 4. A comparison with neural networks -- 4.1 Medical data mining -- 4.2 Benchmark data sets -- 4.3 Experimental setup -- 4.4 Experiments and comparison -- 4.5 Summary and conclusion -- Part II. Method design -- 5. Segment variations -- 5.1 Variation effects -- 5.2 Effective variation and evaluation -- 5.3 Variation step size -- 5.4 Causality -- 5.5 Selection of variation points -- 5.6 Characteristics of variation operators -- 5.7 Segment variation operators -- 5.8 Experimental setup -- 5.9 Experiments -- 5.10 Summary and conclusion -- 6. Instruction mutations -- 6.1 Minimum mutation step size -- 6.2 Instruction mutation operators -- 6.3 Experimental setup -- 6.4 Experiments -- 6.5 Summary and conclusion -- 7. Analysis of control parameters -- 7.1 Number of registers -- 7.2 Number of output registers -- 7.3 Rate of constants -- 7.4 Population size -- 7.5 Maximum program length -- 7.6 Initialization of linear programs -- 7.7 Constant program length -- 7.8 Summary and conclusion -- 8. A comparison with tree-based GP -- 8.1 Tree-based genetic programming -- 8.2 Benchmark problems -- 8.3 Experimental setup -- 8.4 Experiments and comparison -- 8.5 Discussion -- 8.6 Summary and conclusion -- Part III. Advanced techniques and phenomena -- 9. Control of diversity and variation step size -- 9.1 Introduction -- 9.2 Structural program distance -- 9.3 Semantic program distance -- 9.4 Control of diversity -- 9.5 Control of variation step size -- 9.6 Experimental setup -- 9.7 Experiments -- 9.8 Alternative selection criteria -- 9.9 Summary and conclusion -- 10. Code growth and neutral variations --10.1 Code growth in GP -- 10.2 Proposed causes of code growth -- 10.3 Influence of variation step size -- 10.4 Neutral variations -- 10.5 Conditional reproduction and variation -- 10.6 Experimental setup -- 10.7 Experiments -- 10.8 Control of code growth -- 10.9 Summary and conclusion -- 11. Evolution of program teams -- 11.1 Introduction -- 11.2 Team evolution -- 11.3 Combination of multiple predictors -- 11.4 Experimental setup -- 11.5 Experiments -- 11.6 Combination of multiple program outputs -- 11.7 Summary and conclusion -- Epilogue
Control code
ocn123244648
Dimensions
unknown
Extent
1 online resource (xiii, 315 p.)
Form of item
online
Isbn
9780387310305
Isbn Type
(electronic)
Other physical details
ill
Specific material designation
remote
System control number
(OCoLC)123244648
Label
Linear genetic programming, Markus Brameier, Wolfgang Banzhaf, (electronic resource)
Publication
Bibliography note
Includes bibliographical references (p. [291]-302) and index
Contents
About the authors -- 1. Introduction -- 1.1 Evolutionary algorithms -- 1.2 Genetic programming -- 1.3 Linear genetic programming -- 1.4 Motivation -- Part I. Fundamental analysis -- 2. Basic concepts of linear genetic programmning -- 2.1 Representation of programs -- 2.2 Execution of programs -- 2.3 Evolution of programs -- 3. Characteristics of the linear representation -- 3.1 Effective code and noneffective code -- 3.2 Structural introns and semantic introns -- 3.3 Graph interpretation -- 3.4 Analysis of program structure -- 3.5 Graph evolution -- 3.6 Summary and conclusion -- 4. A comparison with neural networks -- 4.1 Medical data mining -- 4.2 Benchmark data sets -- 4.3 Experimental setup -- 4.4 Experiments and comparison -- 4.5 Summary and conclusion -- Part II. Method design -- 5. Segment variations -- 5.1 Variation effects -- 5.2 Effective variation and evaluation -- 5.3 Variation step size -- 5.4 Causality -- 5.5 Selection of variation points -- 5.6 Characteristics of variation operators -- 5.7 Segment variation operators -- 5.8 Experimental setup -- 5.9 Experiments -- 5.10 Summary and conclusion -- 6. Instruction mutations -- 6.1 Minimum mutation step size -- 6.2 Instruction mutation operators -- 6.3 Experimental setup -- 6.4 Experiments -- 6.5 Summary and conclusion -- 7. Analysis of control parameters -- 7.1 Number of registers -- 7.2 Number of output registers -- 7.3 Rate of constants -- 7.4 Population size -- 7.5 Maximum program length -- 7.6 Initialization of linear programs -- 7.7 Constant program length -- 7.8 Summary and conclusion -- 8. A comparison with tree-based GP -- 8.1 Tree-based genetic programming -- 8.2 Benchmark problems -- 8.3 Experimental setup -- 8.4 Experiments and comparison -- 8.5 Discussion -- 8.6 Summary and conclusion -- Part III. Advanced techniques and phenomena -- 9. Control of diversity and variation step size -- 9.1 Introduction -- 9.2 Structural program distance -- 9.3 Semantic program distance -- 9.4 Control of diversity -- 9.5 Control of variation step size -- 9.6 Experimental setup -- 9.7 Experiments -- 9.8 Alternative selection criteria -- 9.9 Summary and conclusion -- 10. Code growth and neutral variations --10.1 Code growth in GP -- 10.2 Proposed causes of code growth -- 10.3 Influence of variation step size -- 10.4 Neutral variations -- 10.5 Conditional reproduction and variation -- 10.6 Experimental setup -- 10.7 Experiments -- 10.8 Control of code growth -- 10.9 Summary and conclusion -- 11. Evolution of program teams -- 11.1 Introduction -- 11.2 Team evolution -- 11.3 Combination of multiple predictors -- 11.4 Experimental setup -- 11.5 Experiments -- 11.6 Combination of multiple program outputs -- 11.7 Summary and conclusion -- Epilogue
Control code
ocn123244648
Dimensions
unknown
Extent
1 online resource (xiii, 315 p.)
Form of item
online
Isbn
9780387310305
Isbn Type
(electronic)
Other physical details
ill
Specific material designation
remote
System control number
(OCoLC)123244648

Library Locations

    • InternetBorrow it
      Albany, Auckland, 0632, NZ
Processing Feedback ...