Coverart for item
The Resource Life at extremes : environments, organisms, and strategies for survival, edited by Elanor M. Bell, (electronic resource)

Life at extremes : environments, organisms, and strategies for survival, edited by Elanor M. Bell, (electronic resource)

Label
Life at extremes : environments, organisms, and strategies for survival
Title
Life at extremes
Title remainder
environments, organisms, and strategies for survival
Statement of responsibility
edited by Elanor M. Bell
Contributor
Subject
Language
eng
Illustrations
  • illustrations
  • maps
Index
index present
Literary form
non fiction
Nature of contents
bibliography
http://library.link/vocab/relatedWorkOrContributorName
Bell, Elanor
http://library.link/vocab/subjectName
  • Biotic communities
  • Extreme environments
  • Organisms
  • Adaptation (Biology)
  • Acclimatization
  • Survival
  • Climatic changes
  • Seasons
  • Pollution
Label
Life at extremes : environments, organisms, and strategies for survival, edited by Elanor M. Bell, (electronic resource)
Instantiates
Publication
Bibliography note
Includes bibliographical references and index
Contents
  • 1. What are Extreme Environments and What Lives in Them? / Terry V. Callaghan -- 1.1. History and Definition of the Terms Èxtreme' and Èxtremophile' -- 1.2. Types of Extreme Environment -- 1.3. Life in Transition -- 1.4. One Man's Meat is Another Man's Poison -- 1.5. Timing is Everything -- 1.6. A Frog is not a Frog but Merely a Transient Phase Between a Tadpole and an Egg -- 1.7. Friends and Neighbours -- 1.8. Where to Next? -- References -- 2. Past Extremes / Barry H. Lomax -- 2.1. Introduction -- 2.2. Archaean Climate and Life (̃3500 Ma) -- 2.2.1. Archaean climate -- 2.3. Transition to the Land (̃470 Ma) -- 2.3.1. The rise of the embryophytes -- 2.3.2. Embryophytes and the decline in atmospheric CO2 and the rise of O2 -- 2.4. Mass Extinction and Extreme Environments -- 2.4.1. Permian/Triassic (P/Tr) boundary -- 2.4.2. Cretaceous/Tertiary (K/T) boundary (65 Ma) -- 2.5. Conclusion -- References -- 3. Polar Marine Ecosystems / David K.A. Barnes -- 3.1. Introduction -- 3.2. The Arctic Seas Versus the Southern Ocean -- 3.3. Water Column -- 3.4. Shallows -- 3.4.1. Ice scour -- 3.4.2. Climate change -- 3.4.3. Water climate -- 3.5. Continental Shelf -- 3.5.1. Disturbance -- 3.5.2. Size -- 3.5.3. Reproduction -- 3.5.4. Diversity gradients -- 3.6. Below Ice Shelves -- 3.7. Continental Slope -- 3.7.1. Disturbance -- 3.7.2. Carbonate compensation depth -- 3.8. Isolated Islands -- 3.9. Conclusions -- References -- 4. Sea Ice / David N. Thomas -- 4.1. Introduction -- 4.2. The Physics of Sea Ice -- 4.3. Space in Ice -- 4.4. Organisms Living in Sea Ice -- 4.5. Mechanisms to Avoid Freezing -- 4.6. Extracellular Polymeric Substances in Sea Ice -- 4.7. Oxygen in Sea Ice -- 4.8. Dimethylsulphonioproprionate in Sea Ice -- 4.9. Biomarkers for Sea Ice Extent in Past Climates -- 4.10. Concluding Remarks -- References -- 5. Polar Terrestrial Environments / Peter Convey -- 5.1. Introduction -- 5.2. Terrestrial Ecosystems -- 5.2.1. Habitats -- 5.2.2. Permafrost -- 5.2.3. Polar soils -- 5.3. Terrestrial Biota and Communities -- 5.3.1. Ice-free ecosystems -- 5.3.2. Vegetation -- 5.3.3. Invertebrate fauna -- 5.3.4. Vertebrate fauna -- 5.3.5. Exceptional ecosystems -- 5.4. Physiology and Ecology -- 5.4.1. Life history strategies -- 5.4.2. Life under extreme stress -- 5.4.3. Life cycles -- 5.5. Colonization of the Polar Regions by Terrestrial Biota -- 5.6. Arctic and Antarctic Comparisons -- References -- 6. High Altitude and Latitude Lakes / Elanor M. Bell -- 6.1. Introduction -- 6.2. Trophic Structure -- 6.3. Seasonal Patterns of Primary Productivity -- 6.3.1. Alpine lake primary production -- 6.3.2. Arctic lake primary production -- 6.3.3. Antarctic lake primary production -- 6.4. Secondary Production: Bacteria and Viruses -- 6.5. Secondary Producers: Protozoa and Invertebrates -- 6.6. Survival Strategies and Adaptation in Extreme Lakes -- 6.7. Future Directions -- References -- 7. Subglacial Lakes / David A. Pearce -- 7.1. Introduction -- 7.2. Geographic Range, History and Distribution -- 7.3. The Extreme Characteristics of Subglacial Lakes -- 7.4. The Predicted Diversity and Community Composition of Life in Subglacial Lakes -- 7.4.1. Analogues for life in subglacial lakes -- 7.4.2. Challenges for the study of life in subglacial lakes -- 7.4.3. Likely organism groups -- 7.5. Existing Studies -- 7.6. Methods Employed to Study Subglacial Lakes -- 7.6.1. Physical -- 7.6.2. Biological -- 7.6.3. Chemical -- 7.6.4. Planned access -- 7.6.5. Cleanliness -- 7.6.6. Detection limits -- 7.7. Subglacial Lake Extremophiles and Biotechnology -- 7.8. Conclusions -- Useful Websites -- References -- 8. Cold Alpine Regions / Roland Psenner -- 8.1. Introduction -- 8.2. Alpine Cryospheric Compartments and the Diversity of Life Within Them -- 8.2.1. Ice covers on high mountain lakes -- Formation and characterization of alpine lake ice -- Microbial communities in alpine lake ice -- 8.2.2. Snow -- Microbial communities in snow -- 8.2.3. Alpine glaciers -- Life in alpine cryoconite holes -- The implications of glacial melt on alpine glaciers -- 8.3. Extremotolerant Organisms in Biotechnology and Astrobiology -- 8.4. Conclusions -- Acknowledgements -- References -- 9. Glacier Surface Habitats / Jemma L. Wadham -- 9.1. Introduction to Glacier Surface Habitats -- 9.2. Structures and Types of Supraglacial Environments -- 9.2.1. Cryoconite holes -- Open holes -- Closed holes -- 9.2.2. Cryolakes -- 9.2.3. Other sediment forms -- 9.3. Extreme Conditions in Supraglacial Environments -- 9.3.1. Biogeochemical processes in cryoconite holes -- Oxygen -- Organic matter -- Nutrient cycling -- pH -- 9.3.2. Measuring biological activity in cryoconite holes -- 9.4. The Diversity of Supraglacial Communities -- 9.4.1. Cryoconite hole communities -- Primary producers -- Decomposers -- Grazers -- Viruses -- 9.4.2. Glacier ice and snow communities -- 9.5. Impacts on Surrounding Environments -- 9.6. Implications for Surrounding Regions and Life on Other Planets -- References -- 10. Polar Deserts / Diana H. Wall -- 10.1. Introduction: a Cold, Dry Environment -- 10.2. The Physical Realm -- 10.3. The Diversity of Life in the Dry Valleys Polar Desert -- 10.3.1. Plant and fungal life -- Mosses -- Lichens -- Algae -- Fungi -- 10.3.2. Animals -- Protozoa -- Tardigrades -- Rotifers -- Nematodes -- Collembola -- Mites -- 10.3.3. Microbes -- 10.4. Mechanisms for Survival in Polar Deserts -- 10.4.1. Desiccation and anhydrobiosis -- 10.4.2. Freeze tolerance, freeze avoidance and s̀upercooling' -- 10.5. Trophic Structure and Food Webs -- 10.6. Environmental Changes and Biotic Response -- 10.6.1. Climate changes -- 10.6.2. Biotic responses to change -- 10.7. The Human Connection -- References -- 11. Hot Desert Environments / Shimon Rachmilevitch -- 11.1. The Hot Desert Environment -- 11.1.1. Formation and geographical distribution -- 11.1.2. Types of hot deserts -- 11.2. Abiotic Stress Factors in Hot Deserts and Mechanisms of Stress Resistance -- 11.2.1. Radiation and temperature -- 11.2.2. Water scarcity -- 11.2.3. Salinity -- 11.2.4. Strong wind and dust storms -- 11.3. Biotic Interactions in Deserts -- 11.4. Concluding Remarks -- References -- 12. Terrestrial Hydrothermal Environments / James Cass -- 12.1. Introduction to Terrestrial Hydrothermal Environments -- 12.2. Physical and Chemical Characteristics of Terrestrial Hydrothermal Environments -- 12.3. The Diversity of Terrestrial Hydrothermal Environments -- 12.3.1. Microbiology of terrestrial thermal habitats: neutral and alkaline habitats -- Bacterial diversity in neutral and alkaline environments -- Archaeal diversity in neutral and alkaline habitats -- Eukaryote diversity in neutral and alkaline environments -- 12.3.2. Microbiology of terrestrial thermal habitats: acidic habitats -- Bacterial diversity in thermacidophilic habitats -- Archaeal diversity in thermoacidophilic habitats -- Eukaryote diversity in thermoacidophilic habitats -- 12.4. Mechanisms for Survival in Terrestrial Hydrothermal Environments -- 12.4.1. Genetic stability at high temperatures -- 12.4.2. Protein stability -- 12.4.3. Membranes and intracellular pH homeostasis -- 12.5. Evolutionary Implications -- 12.6. Biotechnology: Commercial Utilization of Thermophiles -- 12.7. Possible Analogues for Life on Early Earth and in Exobiology -- 12.8. Conclusion -- References -- 13. Deep-Sea Hydrothermal Vents / Richard A. Lutz -- 13.1. Introduction -- 13.2. Diversity of Life at Deep-sea Hydrothermal Vent Sites -- 13.3. How Fast Do Biological and Geological Processes Occur at Deep-sea Hydrothermal Vents? -- 13.4. Organism Strategies and Adaptations at Deep-sea Hydrothermal Vents -- 13.4.1. Larval dispersal -- 13.4.2. Larval settlement -- 13.4.3. Sulfide stabilization -- 13.4.4. Thermal tolerance -- 13.4.5. Symbionts -- 13.4.6. Food supply -- 13.5. Implications for Origin of Life and Extraterrestrial Life Forms -- References -- 14. High Hydrostatic Pressure Environments / Florence Pradillon -- 14.1. Introduction -- 14.2. Pressure Effects on Biological Systems -- 14.2.1. Principle of pressure effects on biological systems -- 14.2.2. Pressure effects on molecular assemblages in cells -- Pressure effects on proteins -- Pressure effects on biomembranes -- Pressure effects on nucleic acids -- Pressure effects on chemical equilibrium and enzymatic reactions -- 14.2.3. Thresholds of pressure effects and interactions with other physico-chemical factors -- 14.3. High Pressure Biosphere Collections and Observation Tools -- 14.4. Adaptation to High Hydrostatic Pressure -- 14.4.1. Evolution of pressure-resistant functions -- 14.4.2. Gene expression pattern changes in response to pressure -- 14.4.3. Pressure-induced specific genes -- 14.5. Pressure Variations' Impact on Organisms' Life History Strategies -- 14.5.1. Deep diving in surface dwellers -- 14.5.2. Pressure changes in marine embryos and larvae -- 14.5.3. Sensing pressure changes -- 14.6. Conclusions -- References -- 15. Deep Sea / David Hughes -- 15.1. Introduction -- 15.2. The Deep-Sea Environment -- 15.2.1. Physical and chemical background -- 15.2.2. Food for the deep sea -- 15.2.3. How èxtreme' is the deep sea? -- 15.3. Life in a Dark World -- 15.3.1. Vision and biol.
  • Contents note continued: 15.3.2. Light and the pace of life -- 15.4. Finding Food -- 15.4.1. Mid-water filterers and predators -- 15.4.2. Sediment grazers -- 15.4.3. Seafloor predators and scavengers -- 15.5. Deep-Sea Life Cycles -- 15.5.1. Size, growth and longevity -- 15.5.2. Reproduction -- 15.6. Ecosystem Structure and Functioning -- 15.6.1. Variation in biomass with depth, geography and time -- 15.6.2. Biodiversity in the deep sea -- 15.6.3. Food webs and energy flow -- 15.7. Caves as Deep-Sea Analogues -- 15.8. Deep-Sea Life Beyond the Earth? -- References -- 16. Caves and Karst Environments / Annette Summers Engel -- 16.1. Introduction -- 16.2. Description of Caves: Definition, Distribution and Biogeochemistry -- 16.2.1. Introduction -- 16.2.2. Classification and formation of caves -- 16.2.3. The cave environment -- 16.3. The Biology of Caves -- 16.3.1. History of biological cave research -- 16.3.2. Life in caves -- Viruses -- Bacteria and Archaea -- Eukaryotes -- 16.4. Natural and Anthropogenically Disturbed Caves and the Future of Cave Preservation -- 16.5. Summary and Future Visions of Cave Life Sciences -- Acknowledgements -- Websites -- References -- 17. The Deep Biosphere: Deep Subterranean and Subseafloor Habitats / Verena B. Heuer -- 17.1. Introduction to the Deep Biosphere -- 17.2. Types of Deep Subsurface Environment -- 17.2.1. How deep is deep? -- 17.2.2. Continental sedimentary rocks -- 17.2.3. Ancient salt deposits -- 17.2.4. Aquifers in igneous terrestrial rocks -- 17.2.5. Caves -- 17.2.6. Subseafloor sediments and basement rock -- 17.3. Case Study: Deep Subseafloor -- 17.3.1. The seafloor -- 17.3.2. Definition -- 17.3.3. The physical and chemical extremes of the deep subseafloor -- Pressure -- Porosity -- Temperature -- Organic matter and energy -- 17.4. Life in the Deep Subseafloor -- 17.4.1. Diversity and community composition -- 17.4.2. Metabolic activity in the deep subseafloor -- 17.5. Adaptations to Life in Deep Subseafloor Environments -- 17.6. Was the Origin of Life ̀Deep'? -- 17.7. Search for Extraterrestrial Life in Subsurface Samples from Other Planets -- 17.8. Conclusions -- References -- 18. Acidic Environments / Guntram Weithoff -- 18.1. Introduction -- 18.2. Types of Acidic Environment -- 18.3. Biodiversity in Acidic Environments -- 18.4. Food Webs and Ecology -- 18.5. Metabolism and Physiology -- 18.5.1. Proton exclusion and extrusion (internal neutral pH) -- 18.5.2. Proton-induced damage to proteins -- 18.5.3. Lipid and fatty acid composition -- 18.5.4. Uptake of nutrients -- 18.5.5. High metal concentrations -- 18.6. The Application of Acidophiles -- 18.6.1. Biodegradation of complex molecules -- 18.6.2. Bioremediation of iron- and sulfate-rich lakes -- 18.6.3. Bioleaching of metals -- 18.7. Acidic Environments as Extraterrestrial Analogues -- References -- 19. Alkaline Environments / Elanor M. Bell -- 19.1. Alkaline Environments -- 19.1.1. Industrial locations -- 19.1.2. Transient alkaline environments -- 19.1.3. Calcium-dominated groundwaters -- 19.1.4. Soda lakes and deserts -- 19.2. The Diversity, Community Composition and Biochemical Groups of Alkaliphiles in Soda Lakes -- 19.2.1. Primary producers -- 19.2.2. Chemo-organotrophs -- 19.2.3. Methanogens -- 19.2.4. Sulfur-reducing and -oxidizing alkaliphiles -- 19.2.5. Acetogenic and acetoclastic alkaliphiles -- 19.2.6. Nitrogen-fixing, ammonia- and nitrite-oxidizing, and nitrate-reducing alkaliphiles and nitrification -- 19.2.7. Fungi -- 19.2.8. Protozoa -- 19.2.9. Viruses -- 19.2.10. Animalia -- 19.3. Mechanisms of Adaptation to High Alkalinity -- 19.3.1. Cell walls -- 19.3.2. The cell membrane and cytoplasmic pH regulation -- 19.3.3. Enzyme stability -- 19.3.4. Alkaliphiles versus neutrophiles -- 19.4. Case Studies -- 19.4.1. Lake Turkana, Kenya -- 19.4.2. Lake Magadi, Kenya -- 19.4.3. Mono Lake, USA -- 19.4.4. Octopus Spring, USA -- 19.5. Alkaliphiles in Biotechnology -- 19.6. Alkaliphiles as Analogues for Early Life on Earth and on Other Planets -- References -- 20. Hypersaline Environments / Aharon Oren -- 20.1. Introduction -- 20.2. Halophiles - the Main Groups -- 20.3. An Overview of Hypersaline Environments -- 20.4. Factors Influencing Diversity, Community Composition and Distribution of Halophilic Microbes -- 20.4.1. The effect of the ionic composition of brines on halophilic microbes -- 20.4.2. Diversity, evolution and biogeography of halophilic microbes -- 20.4.3. Multiple extremes -- 20.5. Mechanisms of Adaption to High Salinity -- 20.5.1. S̀alt-in' and ̀compatible-solute' strategies -- 20.5.2. (Post)-genomic insights -- 20.6. Ecological Guilds and Biochemical Groups of Halophiles -- 20.6.1. Oxygenic phototrophs -- 20.6.2. Anoxygenic phototrophs -- 20.6.3. Aerobic chemo-organoheterotrophs: extreme halophiles -- 20.6.4. Aerobic chemo-organoheterotrophs: moderate halophiles -- 20.6.5. Aerobic chemolithoautotrophs -- 20.6.6. Anaerobic: fermentative organisms -- 20.6.7. Anaerobic: denitrifiers and miscellaneous others -- 20.6.8. Anaerobic: sulfate reducers -- 20.6.9. Anaerobic: methanogens and acetogens -- 20.6.10. Fungi -- 20.6.11. Protozoa -- 20.6.12. Animalia -- 20.6.13. Viruses -- 20.7. Case Studies -- 20.7.1. Salterns -- 20.7.2. Great Salt Lake, USA -- 20.7.3. The Dead Sea -- 20.7.4. Soda lakes -- 20.7.5. Deep-sea anoxic hypersaline brine lakes -- 20.7.6. Buried salt deposits -- 20.8. Societal Importance of Hypersaline Environments and Halophiles -- References -- 21. Hypoxic Environments / Stephane Hourdez -- 21.1. Introduction -- 21.2. Aerial Environments -- 21.2.1. Subterranean burrows -- 21.2.2. High altitude -- 21.3. Aquatic Environments -- 21.3.1. Oxygen minimum zones (OMZs) -- 21.3.2. Temporary/seasonal hypoxia in marine systems -- 21.3.3. Chronically hypoxic and highly variable zones -- 21.3.4. Freshwater systems -- 21.4. Hypoxia in a Changing World -- 21.5. Conclusions and Future Directions of Research -- References -- 22. High Ultraviolet Radiation Environments / Andrew T. Davidson -- 22.1. Introduction -- 22.2. Biological Effects of UV Radiation -- 22.3. Factors Affecting the Receipt of UV Radiation -- 22.4. Responses of Terrestrial Organisms to UV-B Radiation -- 22.4.1. Plants -- 22.4.2. Microbes and soils -- 22.4.3. Animals -- 22.5. The Influence of UV-B on Aquatic Ecosystems -- 22.6. Aquatic UV-B Irradiances -- 22.7. Tolerance Mechanisms -- 22.8. Responses of Aquatic Organisms to UV-B Radiation -- 22.8.1. Phytoplankton -- 22.8.2. Benthic plants -- 22.8.3. Bacteria -- 22.8.4. Viruses -- 22.8.5. Animals -- 22.9. Effects of UV-B on Aquatic Communities -- 22.10. Conclusions -- References -- 23. Life in a Changing Climate / Birgit Sattler -- 23.1. Introduction -- 23.2. Will Extreme Species, Communities, Habitats and Ecosystems be Affected by Climate Change? -- 23.3. The Effects of Holocene Climate Oscillations on Aquatic Invertebrate Species -- 23.4. The Release of Heavy Metals from Melting Permafrost -- 23.5. Conclusion -- References -- 24. Anthropogenic Extreme Environments / Lenka Neal -- 24.1. Introduction -- 24.2. Chemical Extremes: Inorganic -- 24.2.1. Acidification -- 24.2.2. Salinization -- 24.2.3. Metal pollution -- 24.2.4. Other inorganics -- 24.3. Chemical Extremes: Organic -- 24.3.1. Oil pollution -- 24.3.2. Eutrophication and hypoxia -- 24.3.3. Other organics -- 24.4. Physical Extremes: Radiation -- 24.4.1. Nuclear weapons use and testing -- 24.4.2. Nuclear accidents -- 24.4.3. Nuclear waste -- 24.4.4. Ultraviolet radiation -- 24.5. Physical Extremes: Temperature -- 24.5.1. Climate change -- 24.5.2. Thermal pollution -- 24.6. Physical Extremes: Pressure -- 24.7. Physical Extremes: Light -- 24.8. Physical Extremes: Habitat Modification -- 24.9. Conclusions -- References -- 25. Biotechnological Applications of Extremophiles: Promise and Prospects / Elanor M. Bell -- 25.1. Introduction -- 25.2. Industrial Applications of Extremophiles -- 25.2.1. Extremophilic enzymes in biotechnology -- 25.2.2. Extremozyme use in the detergent industry -- 25.2.3. Extremozyme use in the leather industry -- 25.2.4. Application of extremophiles for biomining -- Biooxidation -- Bioleaching -- 25.2.5. Application of extremophiles in the biorefining industry -- 25.2.6. Application of extremophiles in the chemical industry -- 25.3. Medical and Biomedical Applications of Extremophiles -- 25.3.1. Pharmaceuticals -- 25.3.2. Biosensing -- Cancer detection -- Chemical warfare agents -- Glucose sensing -- Cation sensing: a thermostable enzyme as a probe for sodium sensing -- 25.3.3. Antibiotic production and resistance to antibiotics -- 25.4. Environmental Applications of Extremophiles -- 25.4.1. Bioremediation of heavy metals and hydrocarbons -- 25.4.2. Bioremediation of radionuclides -- 25.5. Extremophiles as Food Additives -- 25.6. Extremophile Use in Agriculture -- 25.7. Sustainably Harnessing Extremophiles -- 25.8. The Future of Extremophile Biotechnology -- Acknowledgements -- References -- 26. Extreme Environments on Earth as Analogues for Life on Other Planets: Astrobiology / Elanor M. Bell -- 26.1. Introduction -- 26.2. Learning Lessons from Extremophiles -- 26.3. Extreme Environments as Analogues for Astrobiology -- 26.3.1. The Dry Valleys, Antarctica -- 26.3.2. Lake Vostok, Antarctica --
  • Contents note continued: 26.3.3. Svaldbard, Norwegian Arctic -- 26.3.4. Rio Tinto, Spain -- 26.3.5. Atacama Desert, Chile -- 26.3.6. Kamchatka hot springs, Russia -- 26.4. Extremophilic Organisms as Analogues for Extraterrestrial Life -- 26.4.1. Lichens as models for astrobiological research -- Astrobiological experiments involving lichens -- 26.4.2. Fungi -- 26.4.3. Animalia -- 26.5. Panspermia - Orbital, Extraterrestrial Environments -- 26.6. Recent and Future Directions for Astrobiology -- References -- 27. Concluding Remarks / Elanor M. Bell -- 27.1. Extremes and Extremophiles -- 27.2. Lessons from Past Extremes -- 27.3. Influence on Global Processes and Anthropogenically Induced Extremes -- 27.4. Use of Extremophiles in Allowing Humans to Live Outside our Own Èxtreme Envelope' -- 27.5. Outlook for the Discovery of Life on Other Planets -- 27.6. Conclusion -- References
Control code
ocn743298760
Extent
1 online resource (xxii, 554 p.
Isbn
9781845938147
Isbn Type
(alk. paper)
Lccn
2011026535
Other physical details
ill. (chiefly col.), maps (chiefly col.))
System control number
(OCoLC)743298760
Label
Life at extremes : environments, organisms, and strategies for survival, edited by Elanor M. Bell, (electronic resource)
Publication
Bibliography note
Includes bibliographical references and index
Contents
  • 1. What are Extreme Environments and What Lives in Them? / Terry V. Callaghan -- 1.1. History and Definition of the Terms Èxtreme' and Èxtremophile' -- 1.2. Types of Extreme Environment -- 1.3. Life in Transition -- 1.4. One Man's Meat is Another Man's Poison -- 1.5. Timing is Everything -- 1.6. A Frog is not a Frog but Merely a Transient Phase Between a Tadpole and an Egg -- 1.7. Friends and Neighbours -- 1.8. Where to Next? -- References -- 2. Past Extremes / Barry H. Lomax -- 2.1. Introduction -- 2.2. Archaean Climate and Life (̃3500 Ma) -- 2.2.1. Archaean climate -- 2.3. Transition to the Land (̃470 Ma) -- 2.3.1. The rise of the embryophytes -- 2.3.2. Embryophytes and the decline in atmospheric CO2 and the rise of O2 -- 2.4. Mass Extinction and Extreme Environments -- 2.4.1. Permian/Triassic (P/Tr) boundary -- 2.4.2. Cretaceous/Tertiary (K/T) boundary (65 Ma) -- 2.5. Conclusion -- References -- 3. Polar Marine Ecosystems / David K.A. Barnes -- 3.1. Introduction -- 3.2. The Arctic Seas Versus the Southern Ocean -- 3.3. Water Column -- 3.4. Shallows -- 3.4.1. Ice scour -- 3.4.2. Climate change -- 3.4.3. Water climate -- 3.5. Continental Shelf -- 3.5.1. Disturbance -- 3.5.2. Size -- 3.5.3. Reproduction -- 3.5.4. Diversity gradients -- 3.6. Below Ice Shelves -- 3.7. Continental Slope -- 3.7.1. Disturbance -- 3.7.2. Carbonate compensation depth -- 3.8. Isolated Islands -- 3.9. Conclusions -- References -- 4. Sea Ice / David N. Thomas -- 4.1. Introduction -- 4.2. The Physics of Sea Ice -- 4.3. Space in Ice -- 4.4. Organisms Living in Sea Ice -- 4.5. Mechanisms to Avoid Freezing -- 4.6. Extracellular Polymeric Substances in Sea Ice -- 4.7. Oxygen in Sea Ice -- 4.8. Dimethylsulphonioproprionate in Sea Ice -- 4.9. Biomarkers for Sea Ice Extent in Past Climates -- 4.10. Concluding Remarks -- References -- 5. Polar Terrestrial Environments / Peter Convey -- 5.1. Introduction -- 5.2. Terrestrial Ecosystems -- 5.2.1. Habitats -- 5.2.2. Permafrost -- 5.2.3. Polar soils -- 5.3. Terrestrial Biota and Communities -- 5.3.1. Ice-free ecosystems -- 5.3.2. Vegetation -- 5.3.3. Invertebrate fauna -- 5.3.4. Vertebrate fauna -- 5.3.5. Exceptional ecosystems -- 5.4. Physiology and Ecology -- 5.4.1. Life history strategies -- 5.4.2. Life under extreme stress -- 5.4.3. Life cycles -- 5.5. Colonization of the Polar Regions by Terrestrial Biota -- 5.6. Arctic and Antarctic Comparisons -- References -- 6. High Altitude and Latitude Lakes / Elanor M. Bell -- 6.1. Introduction -- 6.2. Trophic Structure -- 6.3. Seasonal Patterns of Primary Productivity -- 6.3.1. Alpine lake primary production -- 6.3.2. Arctic lake primary production -- 6.3.3. Antarctic lake primary production -- 6.4. Secondary Production: Bacteria and Viruses -- 6.5. Secondary Producers: Protozoa and Invertebrates -- 6.6. Survival Strategies and Adaptation in Extreme Lakes -- 6.7. Future Directions -- References -- 7. Subglacial Lakes / David A. Pearce -- 7.1. Introduction -- 7.2. Geographic Range, History and Distribution -- 7.3. The Extreme Characteristics of Subglacial Lakes -- 7.4. The Predicted Diversity and Community Composition of Life in Subglacial Lakes -- 7.4.1. Analogues for life in subglacial lakes -- 7.4.2. Challenges for the study of life in subglacial lakes -- 7.4.3. Likely organism groups -- 7.5. Existing Studies -- 7.6. Methods Employed to Study Subglacial Lakes -- 7.6.1. Physical -- 7.6.2. Biological -- 7.6.3. Chemical -- 7.6.4. Planned access -- 7.6.5. Cleanliness -- 7.6.6. Detection limits -- 7.7. Subglacial Lake Extremophiles and Biotechnology -- 7.8. Conclusions -- Useful Websites -- References -- 8. Cold Alpine Regions / Roland Psenner -- 8.1. Introduction -- 8.2. Alpine Cryospheric Compartments and the Diversity of Life Within Them -- 8.2.1. Ice covers on high mountain lakes -- Formation and characterization of alpine lake ice -- Microbial communities in alpine lake ice -- 8.2.2. Snow -- Microbial communities in snow -- 8.2.3. Alpine glaciers -- Life in alpine cryoconite holes -- The implications of glacial melt on alpine glaciers -- 8.3. Extremotolerant Organisms in Biotechnology and Astrobiology -- 8.4. Conclusions -- Acknowledgements -- References -- 9. Glacier Surface Habitats / Jemma L. Wadham -- 9.1. Introduction to Glacier Surface Habitats -- 9.2. Structures and Types of Supraglacial Environments -- 9.2.1. Cryoconite holes -- Open holes -- Closed holes -- 9.2.2. Cryolakes -- 9.2.3. Other sediment forms -- 9.3. Extreme Conditions in Supraglacial Environments -- 9.3.1. Biogeochemical processes in cryoconite holes -- Oxygen -- Organic matter -- Nutrient cycling -- pH -- 9.3.2. Measuring biological activity in cryoconite holes -- 9.4. The Diversity of Supraglacial Communities -- 9.4.1. Cryoconite hole communities -- Primary producers -- Decomposers -- Grazers -- Viruses -- 9.4.2. Glacier ice and snow communities -- 9.5. Impacts on Surrounding Environments -- 9.6. Implications for Surrounding Regions and Life on Other Planets -- References -- 10. Polar Deserts / Diana H. Wall -- 10.1. Introduction: a Cold, Dry Environment -- 10.2. The Physical Realm -- 10.3. The Diversity of Life in the Dry Valleys Polar Desert -- 10.3.1. Plant and fungal life -- Mosses -- Lichens -- Algae -- Fungi -- 10.3.2. Animals -- Protozoa -- Tardigrades -- Rotifers -- Nematodes -- Collembola -- Mites -- 10.3.3. Microbes -- 10.4. Mechanisms for Survival in Polar Deserts -- 10.4.1. Desiccation and anhydrobiosis -- 10.4.2. Freeze tolerance, freeze avoidance and s̀upercooling' -- 10.5. Trophic Structure and Food Webs -- 10.6. Environmental Changes and Biotic Response -- 10.6.1. Climate changes -- 10.6.2. Biotic responses to change -- 10.7. The Human Connection -- References -- 11. Hot Desert Environments / Shimon Rachmilevitch -- 11.1. The Hot Desert Environment -- 11.1.1. Formation and geographical distribution -- 11.1.2. Types of hot deserts -- 11.2. Abiotic Stress Factors in Hot Deserts and Mechanisms of Stress Resistance -- 11.2.1. Radiation and temperature -- 11.2.2. Water scarcity -- 11.2.3. Salinity -- 11.2.4. Strong wind and dust storms -- 11.3. Biotic Interactions in Deserts -- 11.4. Concluding Remarks -- References -- 12. Terrestrial Hydrothermal Environments / James Cass -- 12.1. Introduction to Terrestrial Hydrothermal Environments -- 12.2. Physical and Chemical Characteristics of Terrestrial Hydrothermal Environments -- 12.3. The Diversity of Terrestrial Hydrothermal Environments -- 12.3.1. Microbiology of terrestrial thermal habitats: neutral and alkaline habitats -- Bacterial diversity in neutral and alkaline environments -- Archaeal diversity in neutral and alkaline habitats -- Eukaryote diversity in neutral and alkaline environments -- 12.3.2. Microbiology of terrestrial thermal habitats: acidic habitats -- Bacterial diversity in thermacidophilic habitats -- Archaeal diversity in thermoacidophilic habitats -- Eukaryote diversity in thermoacidophilic habitats -- 12.4. Mechanisms for Survival in Terrestrial Hydrothermal Environments -- 12.4.1. Genetic stability at high temperatures -- 12.4.2. Protein stability -- 12.4.3. Membranes and intracellular pH homeostasis -- 12.5. Evolutionary Implications -- 12.6. Biotechnology: Commercial Utilization of Thermophiles -- 12.7. Possible Analogues for Life on Early Earth and in Exobiology -- 12.8. Conclusion -- References -- 13. Deep-Sea Hydrothermal Vents / Richard A. Lutz -- 13.1. Introduction -- 13.2. Diversity of Life at Deep-sea Hydrothermal Vent Sites -- 13.3. How Fast Do Biological and Geological Processes Occur at Deep-sea Hydrothermal Vents? -- 13.4. Organism Strategies and Adaptations at Deep-sea Hydrothermal Vents -- 13.4.1. Larval dispersal -- 13.4.2. Larval settlement -- 13.4.3. Sulfide stabilization -- 13.4.4. Thermal tolerance -- 13.4.5. Symbionts -- 13.4.6. Food supply -- 13.5. Implications for Origin of Life and Extraterrestrial Life Forms -- References -- 14. High Hydrostatic Pressure Environments / Florence Pradillon -- 14.1. Introduction -- 14.2. Pressure Effects on Biological Systems -- 14.2.1. Principle of pressure effects on biological systems -- 14.2.2. Pressure effects on molecular assemblages in cells -- Pressure effects on proteins -- Pressure effects on biomembranes -- Pressure effects on nucleic acids -- Pressure effects on chemical equilibrium and enzymatic reactions -- 14.2.3. Thresholds of pressure effects and interactions with other physico-chemical factors -- 14.3. High Pressure Biosphere Collections and Observation Tools -- 14.4. Adaptation to High Hydrostatic Pressure -- 14.4.1. Evolution of pressure-resistant functions -- 14.4.2. Gene expression pattern changes in response to pressure -- 14.4.3. Pressure-induced specific genes -- 14.5. Pressure Variations' Impact on Organisms' Life History Strategies -- 14.5.1. Deep diving in surface dwellers -- 14.5.2. Pressure changes in marine embryos and larvae -- 14.5.3. Sensing pressure changes -- 14.6. Conclusions -- References -- 15. Deep Sea / David Hughes -- 15.1. Introduction -- 15.2. The Deep-Sea Environment -- 15.2.1. Physical and chemical background -- 15.2.2. Food for the deep sea -- 15.2.3. How èxtreme' is the deep sea? -- 15.3. Life in a Dark World -- 15.3.1. Vision and biol.
  • Contents note continued: 15.3.2. Light and the pace of life -- 15.4. Finding Food -- 15.4.1. Mid-water filterers and predators -- 15.4.2. Sediment grazers -- 15.4.3. Seafloor predators and scavengers -- 15.5. Deep-Sea Life Cycles -- 15.5.1. Size, growth and longevity -- 15.5.2. Reproduction -- 15.6. Ecosystem Structure and Functioning -- 15.6.1. Variation in biomass with depth, geography and time -- 15.6.2. Biodiversity in the deep sea -- 15.6.3. Food webs and energy flow -- 15.7. Caves as Deep-Sea Analogues -- 15.8. Deep-Sea Life Beyond the Earth? -- References -- 16. Caves and Karst Environments / Annette Summers Engel -- 16.1. Introduction -- 16.2. Description of Caves: Definition, Distribution and Biogeochemistry -- 16.2.1. Introduction -- 16.2.2. Classification and formation of caves -- 16.2.3. The cave environment -- 16.3. The Biology of Caves -- 16.3.1. History of biological cave research -- 16.3.2. Life in caves -- Viruses -- Bacteria and Archaea -- Eukaryotes -- 16.4. Natural and Anthropogenically Disturbed Caves and the Future of Cave Preservation -- 16.5. Summary and Future Visions of Cave Life Sciences -- Acknowledgements -- Websites -- References -- 17. The Deep Biosphere: Deep Subterranean and Subseafloor Habitats / Verena B. Heuer -- 17.1. Introduction to the Deep Biosphere -- 17.2. Types of Deep Subsurface Environment -- 17.2.1. How deep is deep? -- 17.2.2. Continental sedimentary rocks -- 17.2.3. Ancient salt deposits -- 17.2.4. Aquifers in igneous terrestrial rocks -- 17.2.5. Caves -- 17.2.6. Subseafloor sediments and basement rock -- 17.3. Case Study: Deep Subseafloor -- 17.3.1. The seafloor -- 17.3.2. Definition -- 17.3.3. The physical and chemical extremes of the deep subseafloor -- Pressure -- Porosity -- Temperature -- Organic matter and energy -- 17.4. Life in the Deep Subseafloor -- 17.4.1. Diversity and community composition -- 17.4.2. Metabolic activity in the deep subseafloor -- 17.5. Adaptations to Life in Deep Subseafloor Environments -- 17.6. Was the Origin of Life ̀Deep'? -- 17.7. Search for Extraterrestrial Life in Subsurface Samples from Other Planets -- 17.8. Conclusions -- References -- 18. Acidic Environments / Guntram Weithoff -- 18.1. Introduction -- 18.2. Types of Acidic Environment -- 18.3. Biodiversity in Acidic Environments -- 18.4. Food Webs and Ecology -- 18.5. Metabolism and Physiology -- 18.5.1. Proton exclusion and extrusion (internal neutral pH) -- 18.5.2. Proton-induced damage to proteins -- 18.5.3. Lipid and fatty acid composition -- 18.5.4. Uptake of nutrients -- 18.5.5. High metal concentrations -- 18.6. The Application of Acidophiles -- 18.6.1. Biodegradation of complex molecules -- 18.6.2. Bioremediation of iron- and sulfate-rich lakes -- 18.6.3. Bioleaching of metals -- 18.7. Acidic Environments as Extraterrestrial Analogues -- References -- 19. Alkaline Environments / Elanor M. Bell -- 19.1. Alkaline Environments -- 19.1.1. Industrial locations -- 19.1.2. Transient alkaline environments -- 19.1.3. Calcium-dominated groundwaters -- 19.1.4. Soda lakes and deserts -- 19.2. The Diversity, Community Composition and Biochemical Groups of Alkaliphiles in Soda Lakes -- 19.2.1. Primary producers -- 19.2.2. Chemo-organotrophs -- 19.2.3. Methanogens -- 19.2.4. Sulfur-reducing and -oxidizing alkaliphiles -- 19.2.5. Acetogenic and acetoclastic alkaliphiles -- 19.2.6. Nitrogen-fixing, ammonia- and nitrite-oxidizing, and nitrate-reducing alkaliphiles and nitrification -- 19.2.7. Fungi -- 19.2.8. Protozoa -- 19.2.9. Viruses -- 19.2.10. Animalia -- 19.3. Mechanisms of Adaptation to High Alkalinity -- 19.3.1. Cell walls -- 19.3.2. The cell membrane and cytoplasmic pH regulation -- 19.3.3. Enzyme stability -- 19.3.4. Alkaliphiles versus neutrophiles -- 19.4. Case Studies -- 19.4.1. Lake Turkana, Kenya -- 19.4.2. Lake Magadi, Kenya -- 19.4.3. Mono Lake, USA -- 19.4.4. Octopus Spring, USA -- 19.5. Alkaliphiles in Biotechnology -- 19.6. Alkaliphiles as Analogues for Early Life on Earth and on Other Planets -- References -- 20. Hypersaline Environments / Aharon Oren -- 20.1. Introduction -- 20.2. Halophiles - the Main Groups -- 20.3. An Overview of Hypersaline Environments -- 20.4. Factors Influencing Diversity, Community Composition and Distribution of Halophilic Microbes -- 20.4.1. The effect of the ionic composition of brines on halophilic microbes -- 20.4.2. Diversity, evolution and biogeography of halophilic microbes -- 20.4.3. Multiple extremes -- 20.5. Mechanisms of Adaption to High Salinity -- 20.5.1. S̀alt-in' and ̀compatible-solute' strategies -- 20.5.2. (Post)-genomic insights -- 20.6. Ecological Guilds and Biochemical Groups of Halophiles -- 20.6.1. Oxygenic phototrophs -- 20.6.2. Anoxygenic phototrophs -- 20.6.3. Aerobic chemo-organoheterotrophs: extreme halophiles -- 20.6.4. Aerobic chemo-organoheterotrophs: moderate halophiles -- 20.6.5. Aerobic chemolithoautotrophs -- 20.6.6. Anaerobic: fermentative organisms -- 20.6.7. Anaerobic: denitrifiers and miscellaneous others -- 20.6.8. Anaerobic: sulfate reducers -- 20.6.9. Anaerobic: methanogens and acetogens -- 20.6.10. Fungi -- 20.6.11. Protozoa -- 20.6.12. Animalia -- 20.6.13. Viruses -- 20.7. Case Studies -- 20.7.1. Salterns -- 20.7.2. Great Salt Lake, USA -- 20.7.3. The Dead Sea -- 20.7.4. Soda lakes -- 20.7.5. Deep-sea anoxic hypersaline brine lakes -- 20.7.6. Buried salt deposits -- 20.8. Societal Importance of Hypersaline Environments and Halophiles -- References -- 21. Hypoxic Environments / Stephane Hourdez -- 21.1. Introduction -- 21.2. Aerial Environments -- 21.2.1. Subterranean burrows -- 21.2.2. High altitude -- 21.3. Aquatic Environments -- 21.3.1. Oxygen minimum zones (OMZs) -- 21.3.2. Temporary/seasonal hypoxia in marine systems -- 21.3.3. Chronically hypoxic and highly variable zones -- 21.3.4. Freshwater systems -- 21.4. Hypoxia in a Changing World -- 21.5. Conclusions and Future Directions of Research -- References -- 22. High Ultraviolet Radiation Environments / Andrew T. Davidson -- 22.1. Introduction -- 22.2. Biological Effects of UV Radiation -- 22.3. Factors Affecting the Receipt of UV Radiation -- 22.4. Responses of Terrestrial Organisms to UV-B Radiation -- 22.4.1. Plants -- 22.4.2. Microbes and soils -- 22.4.3. Animals -- 22.5. The Influence of UV-B on Aquatic Ecosystems -- 22.6. Aquatic UV-B Irradiances -- 22.7. Tolerance Mechanisms -- 22.8. Responses of Aquatic Organisms to UV-B Radiation -- 22.8.1. Phytoplankton -- 22.8.2. Benthic plants -- 22.8.3. Bacteria -- 22.8.4. Viruses -- 22.8.5. Animals -- 22.9. Effects of UV-B on Aquatic Communities -- 22.10. Conclusions -- References -- 23. Life in a Changing Climate / Birgit Sattler -- 23.1. Introduction -- 23.2. Will Extreme Species, Communities, Habitats and Ecosystems be Affected by Climate Change? -- 23.3. The Effects of Holocene Climate Oscillations on Aquatic Invertebrate Species -- 23.4. The Release of Heavy Metals from Melting Permafrost -- 23.5. Conclusion -- References -- 24. Anthropogenic Extreme Environments / Lenka Neal -- 24.1. Introduction -- 24.2. Chemical Extremes: Inorganic -- 24.2.1. Acidification -- 24.2.2. Salinization -- 24.2.3. Metal pollution -- 24.2.4. Other inorganics -- 24.3. Chemical Extremes: Organic -- 24.3.1. Oil pollution -- 24.3.2. Eutrophication and hypoxia -- 24.3.3. Other organics -- 24.4. Physical Extremes: Radiation -- 24.4.1. Nuclear weapons use and testing -- 24.4.2. Nuclear accidents -- 24.4.3. Nuclear waste -- 24.4.4. Ultraviolet radiation -- 24.5. Physical Extremes: Temperature -- 24.5.1. Climate change -- 24.5.2. Thermal pollution -- 24.6. Physical Extremes: Pressure -- 24.7. Physical Extremes: Light -- 24.8. Physical Extremes: Habitat Modification -- 24.9. Conclusions -- References -- 25. Biotechnological Applications of Extremophiles: Promise and Prospects / Elanor M. Bell -- 25.1. Introduction -- 25.2. Industrial Applications of Extremophiles -- 25.2.1. Extremophilic enzymes in biotechnology -- 25.2.2. Extremozyme use in the detergent industry -- 25.2.3. Extremozyme use in the leather industry -- 25.2.4. Application of extremophiles for biomining -- Biooxidation -- Bioleaching -- 25.2.5. Application of extremophiles in the biorefining industry -- 25.2.6. Application of extremophiles in the chemical industry -- 25.3. Medical and Biomedical Applications of Extremophiles -- 25.3.1. Pharmaceuticals -- 25.3.2. Biosensing -- Cancer detection -- Chemical warfare agents -- Glucose sensing -- Cation sensing: a thermostable enzyme as a probe for sodium sensing -- 25.3.3. Antibiotic production and resistance to antibiotics -- 25.4. Environmental Applications of Extremophiles -- 25.4.1. Bioremediation of heavy metals and hydrocarbons -- 25.4.2. Bioremediation of radionuclides -- 25.5. Extremophiles as Food Additives -- 25.6. Extremophile Use in Agriculture -- 25.7. Sustainably Harnessing Extremophiles -- 25.8. The Future of Extremophile Biotechnology -- Acknowledgements -- References -- 26. Extreme Environments on Earth as Analogues for Life on Other Planets: Astrobiology / Elanor M. Bell -- 26.1. Introduction -- 26.2. Learning Lessons from Extremophiles -- 26.3. Extreme Environments as Analogues for Astrobiology -- 26.3.1. The Dry Valleys, Antarctica -- 26.3.2. Lake Vostok, Antarctica --
  • Contents note continued: 26.3.3. Svaldbard, Norwegian Arctic -- 26.3.4. Rio Tinto, Spain -- 26.3.5. Atacama Desert, Chile -- 26.3.6. Kamchatka hot springs, Russia -- 26.4. Extremophilic Organisms as Analogues for Extraterrestrial Life -- 26.4.1. Lichens as models for astrobiological research -- Astrobiological experiments involving lichens -- 26.4.2. Fungi -- 26.4.3. Animalia -- 26.5. Panspermia - Orbital, Extraterrestrial Environments -- 26.6. Recent and Future Directions for Astrobiology -- References -- 27. Concluding Remarks / Elanor M. Bell -- 27.1. Extremes and Extremophiles -- 27.2. Lessons from Past Extremes -- 27.3. Influence on Global Processes and Anthropogenically Induced Extremes -- 27.4. Use of Extremophiles in Allowing Humans to Live Outside our Own Èxtreme Envelope' -- 27.5. Outlook for the Discovery of Life on Other Planets -- 27.6. Conclusion -- References
Control code
ocn743298760
Extent
1 online resource (xxii, 554 p.
Isbn
9781845938147
Isbn Type
(alk. paper)
Lccn
2011026535
Other physical details
ill. (chiefly col.), maps (chiefly col.))
System control number
(OCoLC)743298760

Library Locations

    • InternetBorrow it
      Albany, Auckland, 0632, NZ
Processing Feedback ...