Coverart for item
The Resource Fiber-optic communication systems, Govind P. Agrawal

Fiber-optic communication systems, Govind P. Agrawal

Label
Fiber-optic communication systems
Title
Fiber-optic communication systems
Statement of responsibility
Govind P. Agrawal
Creator
Subject
Language
eng
Summary
"This book provides a comprehensive account of fiber-optic communication systems. The 3rd edition of this book is used worldwide as a textbook in many universities. This 4th edition incorporates recent advances that have occurred, in particular two new chapters. One deals with the advanced modulation formats (such as DPSK, QPSK, and QAM) that are increasingly being used for improving spectral efficiency of WDM lightwave systems. The second chapter focuses on new techniques such as all-optical regeneration that are under development and likely to be used in future communication systems. All other chapters are updated, as well."--Provided by publisher
Member of
Cataloging source
DLC
http://library.link/vocab/creatorDate
1951-
http://library.link/vocab/creatorName
Agrawal, G. P.
Illustrations
illustrations
Index
index present
Literary form
non fiction
Series statement
Wiley series in microwave and optical engineering
http://library.link/vocab/subjectName
  • Optical communications
  • Fiber optics
Label
Fiber-optic communication systems, Govind P. Agrawal
Instantiates
Publication
Accompanying material
1 CD-ROM (4 3/4 in.)
Bibliography note
Includes bibliographical references and index
Contents
  • 1.1. Historical Perspective -- 1.1.1. Need for Fiber-Optic Communications -- 1.1.2. Evolution of Lightwave Systems -- 1.2. Basic Concepts -- 1.2.1. Analog and Digital Signals -- 1.2.2. Channel Multiplexing -- 1.2.3. Modulation Formats -- 1.3. Optical Communication Systems -- 1.4. Lightwave System Components -- 1.4.1. Optical Fibers as a Communication Channel -- 1.4.2. Optical Transmitters -- 1.4.3. Optical Receivers -- Problems -- References -- 2.1. Geometrical-Optics Description -- 2.1.1. Step-Index Fibers -- 2.1.2. Graded-Index Fibers -- 2.2. Wave Propagation -- 2.2.1. Maxwell's Equations -- 2.2.2. Fiber Modes -- 2.2.3. Single-Mode Fibers -- 2.3. Dispersion in Single-Mode Fibers -- 2.3.1. Group-Velocity Dispersion -- 2.3.2. Material Dispersion -- 2.3.3. Waveguide Dispersion -- 2.3.4. Higher-Order Dispersion -- 2.3.5. Polarization-Mode Dispersion -- 2.4. Dispersion-Induced Limitations -- 2.4.1. Basic Propagation Equation -- 2.4.2. Chirped Gaussian Pulses -- 2.4.3. Limitations on the Bit Rate -- 2.4.4. Fiber Bandwidth -- 2.5. Fiber Losses -- 2.5.1. Attenuation Coefficient -- 2.5.2. Material Absorption -- 2.5.3. Rayleigh Scattering -- 2.5.4. Waveguide Imperfections -- 2.6. Nonlinear Optical Effects -- 2.6.1. Stimulated Light Scattering -- 2.6.2. Nonlinear Phase Modulation -- 2.6.3. Four-Wave Mixing -- 2.7. Fiber Design and Fabrication -- 2.7.1. Silica Fibers -- 2.7.2. Plastic Optical Fibers -- 2.7.3. Cables and Connectors -- Problems -- References -- 3.1. Semiconductor Laser Physics -- 3.1.1. Spontaneous and Stimulated Emissions -- 3.1.2. Nonradiative Recombination -- 3.1.3. Optical Gain -- 3.1.4. Feedback and Laser Threshold -- 3.1.5. Longitudinal Modes -- 3.1.6. Laser Structures -- 3.2. Single-Mode Semiconductor Lasers -- 3.2.1. Distributed Feedback Lasers -- 3.2.2. Coupled-Cavity Semiconductor Lasers -- 3.2.3. Tunable Semiconductor Lasers -- 3.2.4. Vertical-Cavity Surface-Emitting Lasers -- 3.3. Laser Characteristics -- 3.3.1. CW Characteristics -- 3.3.2. Modulation Bandwidth -- 3.3.3. Relative Intensity Noise -- 3.3.4. Spectral Linewidth -- 3.4. Optical Signal Generation -- 3.4.1. Direct Modulation -- 3.4.2. External Modulation -- 3.5. Light-Emitting Diodes -- 3.5.1. CW Characteristics -- 3.5.2. Modulation Response -- 3.5.3. LED Structures -- 3.6. Transmitter Design -- 3.6.1. Source[–]Fiber Coupling -- 3.6.2. Driving Circuitry -- 3.6.3. Reliability and Packaging -- Problems -- References -- 4.1. Basic Concepts -- 4.1.1. Responsivity and Quantum Efficiency -- 4.1.2. Rise Time and Bandwidth -- 4.2. Common Photodetectors -- 4.2.1. p[–]n Photodiodes -- 4.2.2. p[–]i[–]n Photodiodes -- 4.2.3. Avalanche Photodiodes -- 4.2.4. MSM Photodetectors -- 4.3. Receiver Design -- 4.3.1. Front End -- 4.3.2. Linear Channel -- 4.3.3. Decision Circuit -- 4.3.4. Integrated Receivers -- 4.4. Receiver Noise -- 4.4.1. Noise Mechanisms -- 4.4.2. p[–]i[–]n Receivers -- 4.4.3. APD Receivers -- 4.5. Coherent Detection -- 4.5.1. Local Oscillator -- 4.5.2. Homodyne Detection -- 4.5.3. Heterodyne Detection -- 4.5.4. Signal-to-Noise Ratio -- 4.6. Receiver Sensitivity -- 4.6.1. Bit-Error Rate -- 4.6.2. Minimum Received Power -- 4.6.3. Quantum Limit of Photodetection -- 4.7. Sensitivity Degradation -- 4.7.1. Extinction Ratio -- 4.7.2. Intensity Noise -- 4.7.3. Timing Jitter -- 4.8. Receiver Performance -- Problems -- References -- 5.1. System Architectures -- 5.1.1. Point-to-Point Links -- 5.1.2. Distribution Networks -- 5.1.3. Local-Area Networks -- 5.2. Design Guidelines -- 5.2.1. Loss-Limited Lightwave Systems -- 5.2.2. Dispersion-Limited Lightwave Systems -- 5.2.3. Power Budget -- 5.2.4. Rise-Time Budget -- 5.3. Long-Haul Systems -- 5.3.1. Performance-Limiting Factors -- 5.3.2. Terrestrial Lightwave Systems -- 5.3.3. Undersea Lightwave Systems -- 5.4. Sources of Power Penalty -- 5.4.1. Modal Noise -- 5.4.2. Mode-Partition Noise -- 5.4.3. Reflection Feedback and Noise -- 5.4.4. Dispersive Pulse Broadening -- 5.4.5. Frequency Chirping -- 5.4.6. Eye-Closure Penalty -- 5.5. Forward Error Correction -- 5.5.1. Error-Correcting Codes -- 5.5.2. Coding Gain -- 5.6. Computer-Aided Design -- Problems -- References -- 6.1. WDM Lightwave Systems -- 6.1.1. High-Capacity Point-to-Point Links -- 6.1.2. Wide-Area and Metro-Area Networks -- 6.1.3. Multiple-Access WDM Networks -- 6.2. WDM Components -- 6.2.1. Tunable Optical Filters -- 6.2.2. Multiplexers and Demultiplexers -- 6.2.3. Add[–]Drop Multiplexers and Filters -- 6.2.4. Star Couplers -- 6.2.5. Wavelength Routers -- 6.2.6. WDM Transmitters and Receivers -- 6.3. System Performance Issues -- 6.3.1. Heterowavelength Linear Crosstalk -- 6.3.2. Homowavelength Linear Crosstalk -- 6.3.3. Nonlinear Raman Crosstalk -- 6.3.4. Stimulated Brillouin Scattering -- 6.3.5. Cross-Phase Modulation -- 6.3.6. Four-Wave Mixing -- 6.3.7. Other Design Issues -- 6.4. Time-Division Multiplexing -- 6.4.1. Channel Multiplexing -- 6.4.2. Channel Demultiplexing -- 6.4.3. System Performance -- 6.5. Subcarrier Multiplexing -- 6.5.1. Analog and Digital SCM Systems -- 6.5.2. Multiwavelength SCM Systems -- 6.5.3. Orthogonal Frequency-Division multiplexing -- 6.6. Code-Division Multiplexing -- 6.6.1. Time-Domain Encoding -- 6.6.2. Frequency-Domain Encoding -- 6.6.3. Frequency Hopping -- Problems -- References -- 7.1. Compensation of Fiber Losses -- 7.1.1. Periodic Amplification Scheme -- 7.1.2. Lumped Versus Distributed Amplification -- 7.1.3. Bidirectional Pumping Scheme -- 7.2. Erbium-Doped Fiber Amplifiers -- 7.2.1. Pumping and Gain Spectrum -- 7.2.2. Two-Level Model -- 7.2.3. Amplifier Noise -- 7.2.4. Multichannel Amplification -- 7.3. Raman Amplifiers -- 7.3.1. Raman Gain and Bandwidth -- 7.3.2. Raman-Induced Signal Gain -- 7.3.3. Multiple-Pump Raman Amplification -- 7.3.4. Noise Figure of Raman Amplifiers -- 7.4. Optical Signal-To-Noise Ratio -- 7.4.1. Lumped Amplification -- 7.4.2. Distributed Amplification -- 7.5. Electrical Signal-To-Noise Ratio -- 7.5.1. ASE-Induced Current Fluctuations -- 7.5.2. Impact of ASE on SNR -- 7.5.3. Noise Buildup in an Amplifier Chain -- 7.6. Receiver Sensitivity and Q Factor -- 7.6.1. Bit-Error Rate -- 7.6.2. Relation between Q Factor and Optical SNR -- 7.7. Role of Dispersive and Nonlinear Effects -- 7.7.1. Noise Growth through Modulation Instability -- 7.7.2. Noise-Induced Signal Degradation -- 7.7.3. Noise-Induced Energy Fluctuations -- 7.7.4. Noise-Induced Timing Jitter -- 7.8. Periodically Amplified Lightwave Systems -- 7.8.1. Numerical Approach -- 7.8.2. Optimum Launched Power -- Problems -- References -- 8.1. Dispersion Problem and Its Solution -- 8.2. Dispersion-Compensating Fibers -- 8.2.1. Conditions for Dispersion Compensation -- 8.2.2. Dispersion Maps -- 8.2.3. DCF Designs -- 8.3. Fiber Bragg Gratings -- 8.3.1. Constant-Period Gratings -- 8.3.2. Chirped Fiber Gratings -- 8.3.3. Sampled Gratings -- 8.4. Dispersion-Equalizing Filters -- 8.4.1. Gires[–]Tournois Filters -- 8.4.2. Mach[–]Zehnder Filters -- 8.4.3. Other All-Pass Filters -- 8.5. Optical Phase Conjugation -- 8.5.1. Principle of Operation -- 8.5.2. Compensation of Self-Phase Modulation -- 8.5.3. Generation of Phase-Conjugated Signal -- 8.6. Channels at High Bit Rates -- 8.6.1. Tunable Dispersion Compensation -- 8.6.2. Higher-Order Dispersion Management -- 8.6.3. PMD Compensation -- 8.7. Electronic Dispersion Compensation -- 8.7.1. Basic Idea behind GVD Precompensation -- 8.7.2. Precompensation at the Transmitter -- 8.7.3. Dispersion Compensation at the Receiver -- Problems -- References -- 9.1. Impact of Fiber Nonlinearity -- 9.1.1. System Design Issues -- 9.1.2. Semianalytic Approach -- 9.1.3. Soliton and Pseudo-linear Regimes -- 9.2. Solitons in Optical Fibers -- 9.2.1. Properties of Optical Solitons -- 9.2.2. Loss-Managed Solitons -- 9.3. Dispersion-Managed Solitons -- 9.3.1. Dispersion-Decreasing Fibers -- 9.3.2. Periodic Dispersion Maps -- 9.3.3. Design Issues -- 9.3.4. Timing Jitter -- 9.3.5. Control of Timing Jitter -- 9.4. Pseudo-linear Lightwave Systems -- 9.4.1. Origin of Intrachannel Nonlinear Effects -- 9.4.2. Intrachannel Cross-Phase Modulation -- 9.4.3. Intrachannel Four-Wave Mixing -- 9.5. Control of Intrachannel Nonlinear Effects -- 9.5.1. Optimization of Dispersion Maps -- 9.5.2. Phase-Alternation Techniques -- 9.5.3. Polarization Bit Interleaving -- Problems -- References -- 10.1. Advanced Modulation Formats -- 10.1.1. Encoding of Optical Signals -- 10.1.2. Amplitude and Phase Modulators -- 10.2. Demodulation Schemes -- 10.2.1. Synchronous Heterodyne Demodulation -- 10.2.2. Asynchronous Heterodyne Demodulation -- 10.2.3. Optical Delay Demodulation -- 10.3. Shot Noise and Bit-Error Rate -- 10.3.1. Synchronous Heterodyne Receivers -- 10.3.2. Asynchronous Heterodyne Receivers -- 10.3.3. Receivers with Delay Demodulation -- 10.4. Sensitivity Degradation Mechanisms -- 10.4.1. Intensity Noise of Lasers -- 10.4.2. Phase Noise of Lasers -- 10.4.3. Signal Polarization Fluctuations -- 10.4.4. Noise Added by Optical Amplifiers -- 10.4.5. Fiber Dispersion -- 10.5. Impact of Nonlinear Effects -- 10.5.1. Nonlinear Phase Noise --
  • Contents note continued: 10.5.2. Effect of Fiber Dispersion -- 10.5.3. Compensation of Nonlinear Phase Noise -- 10.6. Recent Progress -- 10.6.1. Systems with the DBPSK format -- 10.6.2. Systems with the DQPSK format -- 10.6.3. QAM and Related formats -- 10.6.4. Systems Employing Orthogonal FDM -- 10.7. Ultimate Channel Capacity -- Problems -- References -- 11.1. Nonlinear Techniques and Devices -- 11.1.1. Nonlinear Optical Loop Mirrors -- 11.1.2. Parametric Amplifiers -- 11.1.3. Nonlinear Effects in Semiconductor Optical Amplifiers -- 11.1.4. Bistable Optical Devices -- 11.2. All-Optical Flip[–]Flops -- 11.2.1. Semiconductor Lasers and SOAs -- 11.2.2. Coupled Semiconductor Lasers and SOAs -- 11.3. Wavelength Converters -- 11.3.1. XPM-Based Wavelength Converters -- 11.3.2. FWM-Based Wavelength Converters -- 11.3.3. Passive Semiconductor Waveguides -- 11.3.4. SOA-Based Wavelength Converters -- 11.4. Ultrafast Optical Switching -- 11.4.1. Time-Domain Demultiplexing -- 11.4.2. Data-Format Conversion -- 11.4.3. Packet Switching -- 11.5. Optical Regenerators -- 11.5.1. Fiber-Based 2R Regenerators -- 11.5.2. SOA-Based 2R Regenerators -- 11.5.3. Fiber-Based 3R Regenerators -- 11.5.4. SOA-Based 3R Regenerators -- 11.5.5. Regeneration of Phase-Encoded Signals -- Problems -- References
Control code
ocn635455425
Dimensions
25 cm. +
Dimensions
4 3/4 in. or 12 cm.
Edition
4th ed
Extent
xvii, 603 p.
Isbn
9780470505113
Isbn Type
(hardback)
Lccn
2010023284
Other physical details
ill.
Specific material designation
optical disk
System control number
(OCoLC)635455425
Label
Fiber-optic communication systems, Govind P. Agrawal
Publication
Accompanying material
1 CD-ROM (4 3/4 in.)
Bibliography note
Includes bibliographical references and index
Contents
  • 1.1. Historical Perspective -- 1.1.1. Need for Fiber-Optic Communications -- 1.1.2. Evolution of Lightwave Systems -- 1.2. Basic Concepts -- 1.2.1. Analog and Digital Signals -- 1.2.2. Channel Multiplexing -- 1.2.3. Modulation Formats -- 1.3. Optical Communication Systems -- 1.4. Lightwave System Components -- 1.4.1. Optical Fibers as a Communication Channel -- 1.4.2. Optical Transmitters -- 1.4.3. Optical Receivers -- Problems -- References -- 2.1. Geometrical-Optics Description -- 2.1.1. Step-Index Fibers -- 2.1.2. Graded-Index Fibers -- 2.2. Wave Propagation -- 2.2.1. Maxwell's Equations -- 2.2.2. Fiber Modes -- 2.2.3. Single-Mode Fibers -- 2.3. Dispersion in Single-Mode Fibers -- 2.3.1. Group-Velocity Dispersion -- 2.3.2. Material Dispersion -- 2.3.3. Waveguide Dispersion -- 2.3.4. Higher-Order Dispersion -- 2.3.5. Polarization-Mode Dispersion -- 2.4. Dispersion-Induced Limitations -- 2.4.1. Basic Propagation Equation -- 2.4.2. Chirped Gaussian Pulses -- 2.4.3. Limitations on the Bit Rate -- 2.4.4. Fiber Bandwidth -- 2.5. Fiber Losses -- 2.5.1. Attenuation Coefficient -- 2.5.2. Material Absorption -- 2.5.3. Rayleigh Scattering -- 2.5.4. Waveguide Imperfections -- 2.6. Nonlinear Optical Effects -- 2.6.1. Stimulated Light Scattering -- 2.6.2. Nonlinear Phase Modulation -- 2.6.3. Four-Wave Mixing -- 2.7. Fiber Design and Fabrication -- 2.7.1. Silica Fibers -- 2.7.2. Plastic Optical Fibers -- 2.7.3. Cables and Connectors -- Problems -- References -- 3.1. Semiconductor Laser Physics -- 3.1.1. Spontaneous and Stimulated Emissions -- 3.1.2. Nonradiative Recombination -- 3.1.3. Optical Gain -- 3.1.4. Feedback and Laser Threshold -- 3.1.5. Longitudinal Modes -- 3.1.6. Laser Structures -- 3.2. Single-Mode Semiconductor Lasers -- 3.2.1. Distributed Feedback Lasers -- 3.2.2. Coupled-Cavity Semiconductor Lasers -- 3.2.3. Tunable Semiconductor Lasers -- 3.2.4. Vertical-Cavity Surface-Emitting Lasers -- 3.3. Laser Characteristics -- 3.3.1. CW Characteristics -- 3.3.2. Modulation Bandwidth -- 3.3.3. Relative Intensity Noise -- 3.3.4. Spectral Linewidth -- 3.4. Optical Signal Generation -- 3.4.1. Direct Modulation -- 3.4.2. External Modulation -- 3.5. Light-Emitting Diodes -- 3.5.1. CW Characteristics -- 3.5.2. Modulation Response -- 3.5.3. LED Structures -- 3.6. Transmitter Design -- 3.6.1. Source[–]Fiber Coupling -- 3.6.2. Driving Circuitry -- 3.6.3. Reliability and Packaging -- Problems -- References -- 4.1. Basic Concepts -- 4.1.1. Responsivity and Quantum Efficiency -- 4.1.2. Rise Time and Bandwidth -- 4.2. Common Photodetectors -- 4.2.1. p[–]n Photodiodes -- 4.2.2. p[–]i[–]n Photodiodes -- 4.2.3. Avalanche Photodiodes -- 4.2.4. MSM Photodetectors -- 4.3. Receiver Design -- 4.3.1. Front End -- 4.3.2. Linear Channel -- 4.3.3. Decision Circuit -- 4.3.4. Integrated Receivers -- 4.4. Receiver Noise -- 4.4.1. Noise Mechanisms -- 4.4.2. p[–]i[–]n Receivers -- 4.4.3. APD Receivers -- 4.5. Coherent Detection -- 4.5.1. Local Oscillator -- 4.5.2. Homodyne Detection -- 4.5.3. Heterodyne Detection -- 4.5.4. Signal-to-Noise Ratio -- 4.6. Receiver Sensitivity -- 4.6.1. Bit-Error Rate -- 4.6.2. Minimum Received Power -- 4.6.3. Quantum Limit of Photodetection -- 4.7. Sensitivity Degradation -- 4.7.1. Extinction Ratio -- 4.7.2. Intensity Noise -- 4.7.3. Timing Jitter -- 4.8. Receiver Performance -- Problems -- References -- 5.1. System Architectures -- 5.1.1. Point-to-Point Links -- 5.1.2. Distribution Networks -- 5.1.3. Local-Area Networks -- 5.2. Design Guidelines -- 5.2.1. Loss-Limited Lightwave Systems -- 5.2.2. Dispersion-Limited Lightwave Systems -- 5.2.3. Power Budget -- 5.2.4. Rise-Time Budget -- 5.3. Long-Haul Systems -- 5.3.1. Performance-Limiting Factors -- 5.3.2. Terrestrial Lightwave Systems -- 5.3.3. Undersea Lightwave Systems -- 5.4. Sources of Power Penalty -- 5.4.1. Modal Noise -- 5.4.2. Mode-Partition Noise -- 5.4.3. Reflection Feedback and Noise -- 5.4.4. Dispersive Pulse Broadening -- 5.4.5. Frequency Chirping -- 5.4.6. Eye-Closure Penalty -- 5.5. Forward Error Correction -- 5.5.1. Error-Correcting Codes -- 5.5.2. Coding Gain -- 5.6. Computer-Aided Design -- Problems -- References -- 6.1. WDM Lightwave Systems -- 6.1.1. High-Capacity Point-to-Point Links -- 6.1.2. Wide-Area and Metro-Area Networks -- 6.1.3. Multiple-Access WDM Networks -- 6.2. WDM Components -- 6.2.1. Tunable Optical Filters -- 6.2.2. Multiplexers and Demultiplexers -- 6.2.3. Add[–]Drop Multiplexers and Filters -- 6.2.4. Star Couplers -- 6.2.5. Wavelength Routers -- 6.2.6. WDM Transmitters and Receivers -- 6.3. System Performance Issues -- 6.3.1. Heterowavelength Linear Crosstalk -- 6.3.2. Homowavelength Linear Crosstalk -- 6.3.3. Nonlinear Raman Crosstalk -- 6.3.4. Stimulated Brillouin Scattering -- 6.3.5. Cross-Phase Modulation -- 6.3.6. Four-Wave Mixing -- 6.3.7. Other Design Issues -- 6.4. Time-Division Multiplexing -- 6.4.1. Channel Multiplexing -- 6.4.2. Channel Demultiplexing -- 6.4.3. System Performance -- 6.5. Subcarrier Multiplexing -- 6.5.1. Analog and Digital SCM Systems -- 6.5.2. Multiwavelength SCM Systems -- 6.5.3. Orthogonal Frequency-Division multiplexing -- 6.6. Code-Division Multiplexing -- 6.6.1. Time-Domain Encoding -- 6.6.2. Frequency-Domain Encoding -- 6.6.3. Frequency Hopping -- Problems -- References -- 7.1. Compensation of Fiber Losses -- 7.1.1. Periodic Amplification Scheme -- 7.1.2. Lumped Versus Distributed Amplification -- 7.1.3. Bidirectional Pumping Scheme -- 7.2. Erbium-Doped Fiber Amplifiers -- 7.2.1. Pumping and Gain Spectrum -- 7.2.2. Two-Level Model -- 7.2.3. Amplifier Noise -- 7.2.4. Multichannel Amplification -- 7.3. Raman Amplifiers -- 7.3.1. Raman Gain and Bandwidth -- 7.3.2. Raman-Induced Signal Gain -- 7.3.3. Multiple-Pump Raman Amplification -- 7.3.4. Noise Figure of Raman Amplifiers -- 7.4. Optical Signal-To-Noise Ratio -- 7.4.1. Lumped Amplification -- 7.4.2. Distributed Amplification -- 7.5. Electrical Signal-To-Noise Ratio -- 7.5.1. ASE-Induced Current Fluctuations -- 7.5.2. Impact of ASE on SNR -- 7.5.3. Noise Buildup in an Amplifier Chain -- 7.6. Receiver Sensitivity and Q Factor -- 7.6.1. Bit-Error Rate -- 7.6.2. Relation between Q Factor and Optical SNR -- 7.7. Role of Dispersive and Nonlinear Effects -- 7.7.1. Noise Growth through Modulation Instability -- 7.7.2. Noise-Induced Signal Degradation -- 7.7.3. Noise-Induced Energy Fluctuations -- 7.7.4. Noise-Induced Timing Jitter -- 7.8. Periodically Amplified Lightwave Systems -- 7.8.1. Numerical Approach -- 7.8.2. Optimum Launched Power -- Problems -- References -- 8.1. Dispersion Problem and Its Solution -- 8.2. Dispersion-Compensating Fibers -- 8.2.1. Conditions for Dispersion Compensation -- 8.2.2. Dispersion Maps -- 8.2.3. DCF Designs -- 8.3. Fiber Bragg Gratings -- 8.3.1. Constant-Period Gratings -- 8.3.2. Chirped Fiber Gratings -- 8.3.3. Sampled Gratings -- 8.4. Dispersion-Equalizing Filters -- 8.4.1. Gires[–]Tournois Filters -- 8.4.2. Mach[–]Zehnder Filters -- 8.4.3. Other All-Pass Filters -- 8.5. Optical Phase Conjugation -- 8.5.1. Principle of Operation -- 8.5.2. Compensation of Self-Phase Modulation -- 8.5.3. Generation of Phase-Conjugated Signal -- 8.6. Channels at High Bit Rates -- 8.6.1. Tunable Dispersion Compensation -- 8.6.2. Higher-Order Dispersion Management -- 8.6.3. PMD Compensation -- 8.7. Electronic Dispersion Compensation -- 8.7.1. Basic Idea behind GVD Precompensation -- 8.7.2. Precompensation at the Transmitter -- 8.7.3. Dispersion Compensation at the Receiver -- Problems -- References -- 9.1. Impact of Fiber Nonlinearity -- 9.1.1. System Design Issues -- 9.1.2. Semianalytic Approach -- 9.1.3. Soliton and Pseudo-linear Regimes -- 9.2. Solitons in Optical Fibers -- 9.2.1. Properties of Optical Solitons -- 9.2.2. Loss-Managed Solitons -- 9.3. Dispersion-Managed Solitons -- 9.3.1. Dispersion-Decreasing Fibers -- 9.3.2. Periodic Dispersion Maps -- 9.3.3. Design Issues -- 9.3.4. Timing Jitter -- 9.3.5. Control of Timing Jitter -- 9.4. Pseudo-linear Lightwave Systems -- 9.4.1. Origin of Intrachannel Nonlinear Effects -- 9.4.2. Intrachannel Cross-Phase Modulation -- 9.4.3. Intrachannel Four-Wave Mixing -- 9.5. Control of Intrachannel Nonlinear Effects -- 9.5.1. Optimization of Dispersion Maps -- 9.5.2. Phase-Alternation Techniques -- 9.5.3. Polarization Bit Interleaving -- Problems -- References -- 10.1. Advanced Modulation Formats -- 10.1.1. Encoding of Optical Signals -- 10.1.2. Amplitude and Phase Modulators -- 10.2. Demodulation Schemes -- 10.2.1. Synchronous Heterodyne Demodulation -- 10.2.2. Asynchronous Heterodyne Demodulation -- 10.2.3. Optical Delay Demodulation -- 10.3. Shot Noise and Bit-Error Rate -- 10.3.1. Synchronous Heterodyne Receivers -- 10.3.2. Asynchronous Heterodyne Receivers -- 10.3.3. Receivers with Delay Demodulation -- 10.4. Sensitivity Degradation Mechanisms -- 10.4.1. Intensity Noise of Lasers -- 10.4.2. Phase Noise of Lasers -- 10.4.3. Signal Polarization Fluctuations -- 10.4.4. Noise Added by Optical Amplifiers -- 10.4.5. Fiber Dispersion -- 10.5. Impact of Nonlinear Effects -- 10.5.1. Nonlinear Phase Noise --
  • Contents note continued: 10.5.2. Effect of Fiber Dispersion -- 10.5.3. Compensation of Nonlinear Phase Noise -- 10.6. Recent Progress -- 10.6.1. Systems with the DBPSK format -- 10.6.2. Systems with the DQPSK format -- 10.6.3. QAM and Related formats -- 10.6.4. Systems Employing Orthogonal FDM -- 10.7. Ultimate Channel Capacity -- Problems -- References -- 11.1. Nonlinear Techniques and Devices -- 11.1.1. Nonlinear Optical Loop Mirrors -- 11.1.2. Parametric Amplifiers -- 11.1.3. Nonlinear Effects in Semiconductor Optical Amplifiers -- 11.1.4. Bistable Optical Devices -- 11.2. All-Optical Flip[–]Flops -- 11.2.1. Semiconductor Lasers and SOAs -- 11.2.2. Coupled Semiconductor Lasers and SOAs -- 11.3. Wavelength Converters -- 11.3.1. XPM-Based Wavelength Converters -- 11.3.2. FWM-Based Wavelength Converters -- 11.3.3. Passive Semiconductor Waveguides -- 11.3.4. SOA-Based Wavelength Converters -- 11.4. Ultrafast Optical Switching -- 11.4.1. Time-Domain Demultiplexing -- 11.4.2. Data-Format Conversion -- 11.4.3. Packet Switching -- 11.5. Optical Regenerators -- 11.5.1. Fiber-Based 2R Regenerators -- 11.5.2. SOA-Based 2R Regenerators -- 11.5.3. Fiber-Based 3R Regenerators -- 11.5.4. SOA-Based 3R Regenerators -- 11.5.5. Regeneration of Phase-Encoded Signals -- Problems -- References
Control code
ocn635455425
Dimensions
25 cm. +
Dimensions
4 3/4 in. or 12 cm.
Edition
4th ed
Extent
xvii, 603 p.
Isbn
9780470505113
Isbn Type
(hardback)
Lccn
2010023284
Other physical details
ill.
Specific material designation
optical disk
System control number
(OCoLC)635455425

Library Locations

    • ManawatÅ« LibraryBorrow it
      Tennent Drive, Palmerston North, Palmerston North, 4472, NZ
      -40.385340 175.617349
Processing Feedback ...