Coverart for item
The Resource Fatigue and fracture of fibre metal laminates, René Alderliesten

Fatigue and fracture of fibre metal laminates, René Alderliesten

Label
Fatigue and fracture of fibre metal laminates
Title
Fatigue and fracture of fibre metal laminates
Statement of responsibility
René Alderliesten
Creator
Subject
Language
eng
Summary
This book contributes to the field of hybrid technology, describing the current state of knowledge concerning the hybrid material concept of laminated metallic and composite sheets for primary aeronautical structural applications. It is the only book to date on fatigue and fracture of fibre metal laminates (FMLs). The first section of the book provides a general background of the FML technology, highlighting the major FML types developed and studied over the past decades in conjunction with an overview of industrial developments based on filed patents. In turn, the second section discusses the mechanical response to quasi-static loading, together with the fracture phenomena during quasi-static and cyclic loading. To consider the durability aspects related to strength justification and certification of primary aircraft structures, the third section discusses thermal aspects related to FMLs and their mechanical response to various environmental and acoustic conditions
Member of
http://library.link/vocab/creatorName
Alderliesten, René,
Dewey number
620.1/66
Illustrations
illustrations
Index
index present
Literary form
non fiction
Nature of contents
  • dictionaries
  • bibliography
Series statement
Solid mechanics and its applications
Series volume
volume 236
http://library.link/vocab/subjectName
  • Metallic composites
  • Fibrous composites
  • Metallic composites
  • Fibrous composites
Label
Fatigue and fracture of fibre metal laminates, René Alderliesten
Instantiates
Publication
Antecedent source
unknown
Bibliography note
Includes bibliographical references and index
Color
multicolored
Contents
  • Preface; Contents; 1 Introduction; Abstract; 1.1 Introduction; 1.2 Development Perspectives; 1.2.1 Increased Damage Growth Resistance of Metal Laminates; 1.2.2 Utilization in Context of Damage Tolerance; 1.2.3 Increasing Strength of Composites; 1.3 From Material Towards Structural Application; 1.4 Contribution to the FML Knowledge; References; 2 Laminate Concepts & Mechanical Properties; Abstract; 2.1 Introduction; 2.2 Aluminium with Epoxy-Based Adhesive Systems; 2.2.1 ARALL and GLARE, Codes and Standardisation; 2.2.2 Aramid Fibres (ARALL); 2.2.3 Glass Fibres (GLARE, Central)
  • 2.2.4 Carbon Fibres (CARE/CARALL)2.2.5 Polymer Fibres (HP-PE, Zylon); 2.2.6 M5 Fibres; 2.3 Other Metal Constituents; 2.3.1 Titanium-Based FMLs; 2.3.2 Stainless Steel-Based FMLs; 2.3.3 Magnesium-Based FMLs; 2.4 Thermoplastic Adhesive Systems; 2.5 Innovative Hybridization Concepts; References; 3 Patents and Intellectual Property; Abstract; 3.1 Introduction; 3.2 Material Concept Development; 3.2.1 Improving Fatigue and Crack Growth; 3.2.2 Improving Impact Resistance and Tolerance; 3.2.3 Thickness Steps; 3.2.4 Thick Panel Concepts for Lower Wing Covers; 3.2.5 Alternative Fuselage Skin Concepts
  • 3.3 Splicing Concepts3.4 Manufacturing Aspects; 3.4.1 Post-stretching Panels After Curing; 3.4.2 Pre-stretching Panels During Curing; 3.4.3 Lay-up and Curing Concepts; 3.4.4 Alternative Impregnation Processes; 3.5 Design of Fuselage Panels; 3.5.1 General Fuselage Panel Concepts; 3.5.2 Interlaminar Reinforcements and Inserts; 3.5.3 Special Design Features; 3.6 Design of Panel Stiffening Elements; 3.7 FML Components; 3.8 Discussion; 3.8.1 Flat Material Concepts; 3.8.2 Design Aspects; 3.9 Concluding Remarks; References; 4 Stress and Strain; Abstract; 4.1 Introduction
  • 4.2 Stress-Strain in Orthotropic Materials Under Plane Stress4.3 Classical Laminated Plate Theory; 4.4 Residual Stresses; 4.5 Failure of the Composite Constituent; 4.6 Plasticity of the Metal Constituent; 4.7 Generalized Theories of Plasticity; 4.8 Post-stretching; 4.9 Shear Stress and Strain; 4.10 Out-of-Plane (Bending and Torsion); 4.11 Simple Methods for Design Purposes; 4.11.1 Metal Volume Fraction; 4.11.2 Determination of Shear Properties Using Uniaxial Material Data; 4.12 Limit of Validity of CLT and MVF; References; 5 Blunt Notch Strength; Abstract; 5.1 Introduction
  • 5.2 Definitions and Failure Phenomena5.2.1 Definitions; 5.2.2 Notch Sensitivity and Ductility; 5.2.3 Biaxial Loading Using Uniaxial Data; 5.2.4 Composite Failure Modes; 5.2.5 Plasticity-Induced Delamination; 5.2.6 Other Failure Phenomena; 5.2.7 Blunt Notch Strength and Ultimate Strength; 5.3 Theoretical Approaches; 5.3.1 Tsai-Hill/Norris Failure Criteria; 5.3.2 Point and Average Stress Criteria; 5.3.3 Blunt Notch Factor to Ultimate Strength in Net Section; 5.4 Applicability to General Loading Conditions; 5.4.1 Uniaxial Off-Axis Loading; 5.4.2 Shear Loading; 5.4.3 Biaxial Loading
Control code
ocn983797041
Dimensions
unknown
Extent
1 online resource (xii, 300 pages)
File format
unknown
Form of item
online
Isbn
9783319562278
Level of compression
unknown
Other physical details
illustrations (some color)
Quality assurance targets
not applicable
Reformatting quality
unknown
Sound
unknown sound
Specific material designation
remote
System control number
(OCoLC)983797041
Label
Fatigue and fracture of fibre metal laminates, René Alderliesten
Publication
Antecedent source
unknown
Bibliography note
Includes bibliographical references and index
Color
multicolored
Contents
  • Preface; Contents; 1 Introduction; Abstract; 1.1 Introduction; 1.2 Development Perspectives; 1.2.1 Increased Damage Growth Resistance of Metal Laminates; 1.2.2 Utilization in Context of Damage Tolerance; 1.2.3 Increasing Strength of Composites; 1.3 From Material Towards Structural Application; 1.4 Contribution to the FML Knowledge; References; 2 Laminate Concepts & Mechanical Properties; Abstract; 2.1 Introduction; 2.2 Aluminium with Epoxy-Based Adhesive Systems; 2.2.1 ARALL and GLARE, Codes and Standardisation; 2.2.2 Aramid Fibres (ARALL); 2.2.3 Glass Fibres (GLARE, Central)
  • 2.2.4 Carbon Fibres (CARE/CARALL)2.2.5 Polymer Fibres (HP-PE, Zylon); 2.2.6 M5 Fibres; 2.3 Other Metal Constituents; 2.3.1 Titanium-Based FMLs; 2.3.2 Stainless Steel-Based FMLs; 2.3.3 Magnesium-Based FMLs; 2.4 Thermoplastic Adhesive Systems; 2.5 Innovative Hybridization Concepts; References; 3 Patents and Intellectual Property; Abstract; 3.1 Introduction; 3.2 Material Concept Development; 3.2.1 Improving Fatigue and Crack Growth; 3.2.2 Improving Impact Resistance and Tolerance; 3.2.3 Thickness Steps; 3.2.4 Thick Panel Concepts for Lower Wing Covers; 3.2.5 Alternative Fuselage Skin Concepts
  • 3.3 Splicing Concepts3.4 Manufacturing Aspects; 3.4.1 Post-stretching Panels After Curing; 3.4.2 Pre-stretching Panels During Curing; 3.4.3 Lay-up and Curing Concepts; 3.4.4 Alternative Impregnation Processes; 3.5 Design of Fuselage Panels; 3.5.1 General Fuselage Panel Concepts; 3.5.2 Interlaminar Reinforcements and Inserts; 3.5.3 Special Design Features; 3.6 Design of Panel Stiffening Elements; 3.7 FML Components; 3.8 Discussion; 3.8.1 Flat Material Concepts; 3.8.2 Design Aspects; 3.9 Concluding Remarks; References; 4 Stress and Strain; Abstract; 4.1 Introduction
  • 4.2 Stress-Strain in Orthotropic Materials Under Plane Stress4.3 Classical Laminated Plate Theory; 4.4 Residual Stresses; 4.5 Failure of the Composite Constituent; 4.6 Plasticity of the Metal Constituent; 4.7 Generalized Theories of Plasticity; 4.8 Post-stretching; 4.9 Shear Stress and Strain; 4.10 Out-of-Plane (Bending and Torsion); 4.11 Simple Methods for Design Purposes; 4.11.1 Metal Volume Fraction; 4.11.2 Determination of Shear Properties Using Uniaxial Material Data; 4.12 Limit of Validity of CLT and MVF; References; 5 Blunt Notch Strength; Abstract; 5.1 Introduction
  • 5.2 Definitions and Failure Phenomena5.2.1 Definitions; 5.2.2 Notch Sensitivity and Ductility; 5.2.3 Biaxial Loading Using Uniaxial Data; 5.2.4 Composite Failure Modes; 5.2.5 Plasticity-Induced Delamination; 5.2.6 Other Failure Phenomena; 5.2.7 Blunt Notch Strength and Ultimate Strength; 5.3 Theoretical Approaches; 5.3.1 Tsai-Hill/Norris Failure Criteria; 5.3.2 Point and Average Stress Criteria; 5.3.3 Blunt Notch Factor to Ultimate Strength in Net Section; 5.4 Applicability to General Loading Conditions; 5.4.1 Uniaxial Off-Axis Loading; 5.4.2 Shear Loading; 5.4.3 Biaxial Loading
Control code
ocn983797041
Dimensions
unknown
Extent
1 online resource (xii, 300 pages)
File format
unknown
Form of item
online
Isbn
9783319562278
Level of compression
unknown
Other physical details
illustrations (some color)
Quality assurance targets
not applicable
Reformatting quality
unknown
Sound
unknown sound
Specific material designation
remote
System control number
(OCoLC)983797041

Library Locations

    • InternetBorrow it
      Albany, Auckland, 0632, NZ
Processing Feedback ...