Coverart for item
The Resource Condensed matter physics, Michael P. Marder

Condensed matter physics, Michael P. Marder

Label
Condensed matter physics
Title
Condensed matter physics
Statement of responsibility
Michael P. Marder
Creator
Subject
Language
eng
Summary
"This second edition presents an updated review of the whole field of condensed matter physics. It consolidates new and classic topics from disparate sources, teaching not only about the effective masses of electrons in semiconductor crystals and band theory, but also about quasicrystals, dynamics of phase separation, why rubber is more floppy than steel, granular materials, quantum dots, Berry phases, the quantum hall effect, and Luttinger liquids"--
Assigning source
Provided by publisher
Cataloging source
DLC
http://library.link/vocab/creatorDate
1960-
http://library.link/vocab/creatorName
Marder, Michael P.
Illustrations
illustrations
Index
index present
Literary form
non fiction
Nature of contents
bibliography
http://library.link/vocab/subjectName
  • Condensed matter
  • Solid state physics
Label
Condensed matter physics, Michael P. Marder
Instantiates
Publication
Bibliography note
Includes bibliographical references and index
Contents
  • Why are Solids Crystalline?
  • Reciprocal Lattice
  • 3.2.6.
  • Miller Indices
  • 3.2.7.
  • Scattering from a Lattice with a Basis
  • 3.3.
  • Experimental Methods
  • 3.3.1.
  • Laue Method
  • 3.3.2.
  • 1.2.
  • Rotating Crystal Method
  • 3.3.3.
  • Powder Method
  • 3.4.
  • Further Features of Scattering Experiments
  • 3.4.1.
  • Interaction of X-Rays with Matter
  • 3.4.2.
  • Production of X-Rays
  • 3.4.3.
  • Two-Dimensional Lattices
  • Neutrons
  • 3.4.4.
  • Electrons
  • 3.4.5.
  • Deciphering Complex Structures
  • 3.4.6.
  • Accuracy of Structure Determinations
  • 3.5.
  • Correlation Functions
  • 3.5.1.
  • 1.2.1.
  • Why Bragg Peaks Survive Atomic Motions
  • 3.5.2.
  • Extended X-Ray Absorption Fine Structure (EXAFS)
  • 3.5.3.
  • Dynamic Light Scattering
  • 3.5.4.
  • Application to Dilute Solutions
  • Problems
  • References
  • 4.
  • Bravais Lattices
  • Surfaces and Interfaces
  • 4.1.
  • Introduction
  • 4.2.
  • Geometry of Interfaces
  • 4.2.1.
  • Coherent and Commensurate Interfaces
  • 4.2.2.
  • Stacking Period and Interplanar Spacing
  • 4.2.3.
  • 1.2.2.
  • Other Topics in Surface Structure
  • 4.3.
  • Experimental Observation and Creation of Surfaces
  • 4.3.1.
  • Low-Energy Electron Diffraction (LEED)
  • 4.3.2.
  • Reflection High-Energy Electron Diffraction (RHEED)
  • 4.3.3.
  • Molecular Beam Epitaxy (MBE)
  • 4.3.4.
  • Enumeration of Two-Dimensional Bravais Lattices
  • Field Ion Microscopy (FIM)
  • 4.3.5.
  • Scanning Tunneling Microscopy (STM)
  • 4.3.6.
  • Atomic Force Microscopy (AFM)
  • 4.3.7.
  • High Resolution Electron Microscopy (HREM)
  • Problems
  • References
  • 5.
  • 1.2.3.
  • Beyond Crystals
  • 5.1.
  • Introduction
  • 5.2.
  • Diffusion and Random Variables
  • 5.2.1.
  • Brownian Motion and the Diffusion Equation
  • 5.2.2.
  • Diffusion
  • 5.2.3.
  • Lattices with Bases
  • Derivation from Master Equation
  • 5.2.4.
  • Connection between Diffusion and Random Walks
  • 5.3.
  • Alloys
  • 5.3.1.
  • Equilibrium Structures
  • 5.3.2.
  • Phase Diagrams
  • 5.3.3.
  • 1.2.4.
  • Superlattices
  • 5.3.4.
  • Phase Separation
  • 5.3.5.
  • Nonequilibrium Structures in Alloys
  • 5.3.6.
  • Dynamics of Phase Separation
  • 5.4.
  • Simulations
  • 5.4.1.
  • Machine generated contents note:
  • Primitive Cells
  • Monte Carlo
  • 5.4.2.
  • Molecular Dynamics
  • 5.5.
  • Liquids
  • 5.5.1.
  • Order Parameters and Long- and Short-Range Order
  • 5.5.2.
  • Packing Spheres
  • 5.6.
  • 1.2.5.
  • Glasses
  • 5.7.
  • Liquid Crystals
  • 5.7.1.
  • Nematics, Cholesterics, and Smectics
  • 5.7.2.
  • Liquid Crystal Order Parameter
  • 5.8.
  • Polymers
  • 5.8.1.
  • Wigner-Seitz Cells
  • Ideal Radius of Gyration
  • 5.9.
  • Colloids and Diffusing-Wave Scattering
  • 5.9.1.
  • Colloids
  • 5.9.2.
  • Diffusing-Wave Spectroscopy
  • 5.10.
  • Quasicrystals
  • 5.10.1.
  • 1.3.
  • One-Dimensional Quasicrystal
  • 5.10.2.
  • Two-Dimensional Quasicrystals---Penrose Tiles
  • 5.10.3.
  • Experimental Observations
  • 5.11.
  • Fullerenes and nanotubes
  • Problems
  • References
  • II.
  • Symmetries
  • Electronic Structure
  • 6.
  • The Free Fermi Gas and Single Electron Model
  • 6.1.
  • Introduction
  • 6.2.
  • Starting Hamiltonian
  • 6.3.
  • Densities of States
  • 6.3.1.
  • 1.3.1.
  • Definition of Density of States D
  • 6.3.2.
  • Results for Free Electrons
  • 6.4.
  • Statistical Mechanics of Noninteracting Electrons
  • 6.5.
  • Sommerfeld Expansion
  • 6.5.1.
  • Specific Heat of Noninteracting Electrons at Low Temperatures
  • Problems
  • The Space Group
  • References
  • 7.
  • Non-Interacting Electrons in a Periodic Potential
  • 7.1.
  • Introduction
  • 7.2.
  • Translational Symmetry---Bloch's Theorem
  • 7.2.1.
  • One Dimension
  • 7.2.2.
  • 1.3.2.
  • Bloch's Theorem in Three Dimensions
  • 7.2.3.
  • Formal Demonstration of Bloch's Theorem
  • 7.2.4.
  • Additional Implications of Bloch's Theorem
  • 7.2.5.
  • Van Hove Singularities
  • 7.2.6.
  • Kronig-Penney Model
  • 7.3.
  • Translation and Point Groups
  • Rotational Symmetry---Group Representations
  • 7.3.1.
  • Classes and Characters
  • 7.3.2.
  • Consequences of point group symmetries for Schrodinger's equation
  • Problems
  • References
  • 8.
  • Nearly Free and Tightly Bound Electrons
  • 8.1.
  • 1.3.3.
  • Introduction
  • 8.2.
  • Nearly Free Electrons
  • 8.2.1.
  • Degenerate Perturbation Theory
  • 8.3.
  • Brillouin Zones
  • 8.3.1.
  • Nearly Free Electron Fermi Surfaces
  • 8.4.
  • I.
  • Role of Symmetry
  • Tightly Bound Electrons
  • 8.4.1.
  • Linear Combinations of Atomic Orbitals
  • 8.4.2.
  • Wannier Functions
  • 8.4.3.
  • Geometric Phases
  • 8.4.4.
  • Tight Binding Model
  • Problems
  • Problems
  • References
  • 9.
  • Electron-Electron Interactions
  • 9.1.
  • Introduction
  • 9.2.
  • Hartree and Hartree-Fock Equations
  • 9.2.1.
  • Variational Principle
  • 9.2.2.
  • References
  • Hartree-Fock Equations
  • 9.2.3.
  • Numerical Implementation
  • 9.2.4.
  • Hartree-Fock Equations for Jellium
  • 9.3.
  • Density Functional Theory
  • 9.3.1.
  • Thomas-Fermi Theory
  • 9.3.2.
  • 2.
  • Stability of Matter
  • 9.4.
  • Quantum Monte Carlo
  • 9.4.1.
  • Integrals
  • Monte Carlo
  • 9.4.2.
  • Quantum Monte Carlo Methods
  • 9.5.
  • Kohn-Sham Equations
  • Three-Dimensional Lattices
  • Problems
  • References
  • 10.
  • Realistic Calculations in Solids
  • 10.1.
  • Introduction
  • 10.2.
  • Numerical Methods
  • 10.2.1.
  • Pseudopotentials and Orthogonalized Planes Waves (OPW)
  • 2.1.
  • 10.2.2.
  • Linear Combination of Atomic Orbitals (LCAO)
  • 10.2.3.
  • Plane Waves
  • 10.2.4.
  • Linear Augmented Plane Waves (LAPW)
  • 10.3.
  • Definition of Metals, Insulators, and Semiconductors
  • 10.4.
  • Brief Survey of the Periodic Table
  • Introduction
  • 10.4.1.
  • Nearly Free Electron Metals
  • 10.4.2.
  • Noble Gases
  • 10.4.3.
  • Semiconductors
  • 10.4.4.
  • Transition Metals
  • 10.4.5.
  • Rare Earths
  • 2.2.
  • Problems
  • References
  • III.
  • Mechanical Properties
  • 11.
  • Cohesion of Solids
  • 11.1.
  • Introduction
  • 11.1.1.
  • Radii of Atoms
  • Monatomic Lattices
  • 11.2.
  • Noble Gases
  • 11.3.
  • Ionic Crystals
  • 11.3.1.
  • Ewald Sums
  • 11.4.
  • Metals
  • 11.4.1.
  • Use of Pseudopotentials
  • 2.2.1.
  • 11.5.
  • Band Structure Energy
  • 11.5.1.
  • Peierls Distortion
  • 11.5.2.
  • Structural Phase Transitions
  • 11.6.
  • Hydrogen-Bonded Solids
  • 11.7.
  • Cohesive Energy from Band Calculations
  • Atomic Structure
  • The Simple Cubic Lattice
  • 11.8.
  • Classical Potentials
  • Problems
  • References
  • 12.
  • Elasticity
  • 12.1.
  • Introduction
  • 12.2.
  • Nonlinear Elasticity
  • 2.2.2.
  • 12.2.1.
  • Rubber Elasticity
  • 12.2.2.
  • Larger Extensions of Rubber
  • 12.3.
  • Linear Elasticity
  • 12.3.1.
  • Solids of Cubic Symmetry
  • 12.3.2.
  • Isotropic Solids
  • The Face-Centered Cubic Lattice
  • 12.4.
  • Other Constitutive Laws
  • 12.4.1.
  • Liquid Crystals
  • 12.4.2.
  • Granular Materials
  • Problems
  • References
  • 13.
  • Phonons
  • 2.2.3.
  • 13.1.
  • Introduction
  • 13.2.
  • Vibrations of a Classical Lattice
  • 13.2.1.
  • Classical Vibrations in One Dimensions
  • 13.2.2.
  • Classical Vibrations in Three Dimensions
  • 13.2.3.
  • Normal Modes
  • The Body-Centered Cubic Lattice
  • 13.2.4.
  • Lattice with a Basis
  • 13.3.
  • Vibrations of a Quantum-Mwechanical Lattice
  • 13.3.1.
  • Phonon Specific Heat
  • 13.3.2.
  • Einstein and Debye Models
  • 13.3.3.
  • Thermal Expansion
  • 2.2.4.
  • 13.4.
  • Inelastic Scattering from Phonons
  • 13.4.1.
  • Neutron Scattering
  • 13.4.2.
  • Formal Theory of Neutron Scattering
  • 13.4.3.
  • Averaging Exponentials
  • 13.4.4.
  • Evaluation of Structure Factor
  • The Hexagonal Lattice
  • 13.4.5.
  • Kohn Anomalies
  • 13.5.
  • The Mossbauer Effect
  • Problems
  • References
  • 14.
  • Dislocations and Cracks
  • 14.1.
  • Introduction
  • 2.2.5.
  • 14.2.
  • Dislocations
  • 14.2.1.
  • Experimental Observations of Dislocations
  • 14.2.2.
  • Force to Move a Dislocation
  • 14.2.3.
  • One-Dimensional Dislocations: Frenkel-Kontorova Model
  • 14.3.
  • Two-Dimensional Dislocations and Hexatic Phases
  • The Hexagonal Close-Packed Lattice
  • 14.3.1.
  • Impossibility of Crystalline Order in Two Dimensions
  • 14.3.2.
  • Orientational Order
  • 14.3.3.
  • Kosterlitz-Thouless-Berezinskii Transition
  • 14.4.
  • Cracks
  • 14.4.1.
  • Fracture of a Strip
  • 2.2.6.
  • 14.4.2.
  • Stresses Around an Elliptical Hole
  • 14.4.3.
  • Stress Intensity Factor
  • 14.4.4.
  • Atomic Aspects of Fracture
  • Problems
  • References
  • 15.
  • Fluid Mechanics
  • 1.
  • The Diamond Lattice
  • 15.1.
  • Introduction
  • 15.2.
  • Newtonian Fluids
  • 15.2.1.
  • Euler's Equation
  • 15.2.2.
  • Navier-Stokes Equation
  • 15.3.
  • Polymeric Solutions
  • 2.3.
  • 15.4.
  • Plasticity
  • 15.5.
  • Superfluid 4He
  • 15.5.1.
  • Two-Fluid Hydrodynamics
  • 15.5.2.
  • Second Sound
  • 15.5.3.
  • Direct Observation of Two Fluids
  • Compounds
  • 15.5.4.
  • Origin of Superfluidity
  • 15.5.5.
  • Lagrangian Theory of Wave Function
  • 15.5.6.
  • Superfluid 3He
  • Problems
  • References
  • IV.
  • Electron Transport
  • 2.3.1.
  • 16.
  • Dynamics of Bloch Electrons
  • Rocksalt---Sodium Chloride
  • 2.3.2.
  • Cesium Chloride
  • 2.3.3.
  • Fluorite---Calcium Fluoride
  • 2.3.4.
  • The Idea of Crystals
  • Zincblende---Zinc Sulfide
  • 2.3.5.
  • Wurtzite---Zinc Oxide
  • 2.3.6.
  • Perovskite---Calcium Titanate
  • 2.4.
  • Classification of Lattices by Symmetry
  • 2.4.1.
  • Fourteen Bravais Lattices and Seven Crystal Systems
  • 2.5.
  • 1.1.
  • Symmetries of Lattices with Bases
  • 2.5.1.
  • Thirty-Two Crystallographic Point Groups
  • 2.5.2.
  • Two Hundred Thirty Distinct Lattices
  • 2.6.
  • Some Macroscopic Implications of Microscopic Symmetries
  • 2.6.1.
  • Pyroelectricity
  • 2.6.2.
  • Introduction
  • Piezoelectricity
  • 2.6.3.
  • Optical Activity
  • Problems
  • References
  • 3.
  • Scattering and Structures
  • 3.1.
  • Introduction
  • 3.2.
  • 1.1.1.
  • Theory of Scattering from Crystals
  • 3.2.1.
  • Special Conditions for Scattering
  • 3.2.2.
  • Elastic Scattering from Single Atom
  • 3.2.3.
  • Wave Scattering from Many Atoms
  • 3.2.4.
  • Lattice Sums
  • 3.2.5.
  • Bloch Oscillations
  • General Formula for Relaxation Time
  • 18.2.2.
  • Matthiessen's Rule
  • 18.2.3.
  • Fluctuations
  • 18.3.
  • Metal---Insulator Transitions in Disordered Solids
  • 18.3.1.
  • Impurities and Disorder
  • 18.3.2.
  • 16.2.2.
  • Non-Compensated Impurities and the Mott Transition
  • 18.4.
  • Compensated Impurity Scattering and Green's Functions
  • 18.4.1.
  • Tight-Binding Models of Disordered Solids
  • 18.4.2.
  • Green's Functions
  • 18.4.3.
  • Single Impurity
  • 18.4.4.
  • K. P. Method
  • Coherent Potential Approximation
  • 18.5.
  • Localization
  • 18.5.1.
  • Exact Results in One Dimension
  • 18.5.2.
  • Scaling Theory of Localization
  • 18.5.3.
  • Comparison with Experiment
  • 18.6.
  • 16.2.3.
  • Luttinger Liquids
  • 18.6.1.
  • Density of States
  • Problems
  • References
  • 19.
  • Electronics
  • 19.1.
  • Introduction
  • 19.2.
  • Effective Mass
  • Metal Interfaces
  • 19.2.2.
  • Schottky Barrier
  • 19.2.3.
  • Contact Potentials
  • 19.3.
  • Semiconductors
  • 19.3.1.
  • Pure Semiconductors
  • 19.3.2.
  • 16.3.
  • Semiconductor in Equilibrium
  • 19.3.3.
  • Intrinsic Semiconductor
  • 19.3.4.
  • Extrinsic Semiconductor
  • 19.4.
  • Diodes and Transistors
  • 19.4.1.
  • Surface States
  • 19.4.2.
  • Noninteracting Electrons in an Electric Field
  • Semiconductor Junctions
  • 19.4.3.
  • Boltzmann Equation for Semiconductors
  • 19.4.4.
  • Detailed Theory of Rectification
  • 19.4.5.
  • Transistor
  • 19.5.
  • Inversion Layers
  • 19.5.1.
  • 16.3.1.
  • Heterostructures
  • 19.5.2.
  • Quantum Point Contact
  • 19.5.3.
  • Quantum Dot
  • Problems
  • References
  • V.
  • Optical Properties
  • 20.
  • Zener Tunneling
  • Phenomenological Theory
  • 20.1.
  • Introduction
  • 20.2.
  • Maxwell's Equations
  • 20.2.1.
  • Traveling Waves
  • 20.2.2.
  • Mechanical Oscillators as Dielectric Function
  • 20.3.
  • 16.4.
  • Kramers-Kronig Relations
  • 20.3.1.
  • Application to Optical Experiments
  • 20.4.
  • The Kubo-Greenwood Formula
  • 20.4.1.
  • Born Approximation
  • 20.4.2.
  • Susceptibility
  • 20.4.3.
  • Contents note continued:
  • Semiclassical Equations from Wave Packets
  • Many-Body Green Functions
  • Problems
  • References
  • 21.
  • Optical Properties of Semiconductors
  • 21.1.
  • Introduction
  • 21.2.
  • Cyclotron Resonance
  • 21.2.1.
  • 16.4.1.
  • Electron Energy Surfaces
  • 21.3.
  • Semiconductor Band Gaps
  • 21.3.1.
  • Direct Transitions
  • 21.3.2.
  • Indirect Transitions
  • 21.4.
  • Excitons
  • 21.4.1.
  • Formal Dynamics of Wave Packets
  • Mott---Wannier Excitons
  • 21.4.2.
  • Frenkel Excitons
  • 21.4.3.
  • Electron---Hole Liquid
  • 21.5.
  • Optoelectronics
  • 21.5.1.
  • Solar Cells
  • 21.5.2.
  • 16.4.2.
  • Lasers
  • Problems
  • References
  • 22.
  • Optical Properties of Insulators
  • 22.1.
  • Introduction
  • 22.2.
  • Polarization
  • 22.2.1.
  • Dynamics from Lagrangian
  • Ferroelectrics
  • 22.2.2.
  • Berry phase theory of polarization
  • 22.2.3.
  • Clausius-Mossotti Relation
  • 22.3.
  • Optical Modes in Ionic Crystals
  • 22.3.1.
  • Polaritons
  • 22.3.2.
  • 16.5.
  • Polarons
  • 22.3.3.
  • Experimental Observations of Polarons
  • 22.4.
  • Point Defects and Color Centers
  • 22.4.1.
  • Vacancies
  • 22.4.2.
  • F Centers
  • 22.4.3.
  • Quantizing Semiclassical Dynamics
  • Electron Spin Resonance and Electron Nuclear Double Resonance
  • 22.4.4.
  • Other Centers
  • 22.4.5.
  • Franck-Condon Effect
  • 22.4.6.
  • Urbach Tails
  • Problems
  • References
  • 23.
  • 16.5.1.
  • Optical Properties of Metals and Inelastic Scattering
  • 23.1.
  • Introduction
  • 23.1.1.
  • Plasma Frequency
  • 23.2.
  • Metals at Low Frequencies
  • 23.2.1.
  • Anomalous Skin Effect
  • 23.3.
  • Wannier-Stark Ladders
  • Plasmons
  • 23.3.1.
  • Experimental Observation of Plasmons
  • 23.4.
  • Interband Transitions
  • 23.5.
  • Brillouin and Raman Scattering
  • 23.5.1.
  • Brillouin Scattering
  • 23.5.2.
  • 16.5.2.
  • Raman Scattering
  • 23.5.3.
  • Inelastic X-Ray Scattering
  • 23.6.
  • Photoemission
  • 23.6.1.
  • Measurement of Work Functions
  • 23.6.2.
  • Angle-Resolved Photoemission
  • 23.6.3.
  • 16.1.
  • de Haas-van Alphen Effect
  • Core-Level Photoemission and Charge-Transfer Insulators
  • Problems
  • References
  • VI.
  • Magnetism
  • 24.
  • Classical Theories of Magnetism and Ordering
  • 24.1.
  • Introduction
  • 24.2.
  • 16.5.3.
  • Three Views of Magnetism
  • 24.2.1.
  • From Magnetic Moments
  • 24.2.2.
  • From Conductivity
  • 24.2.3.
  • From a Free Energy
  • 24.3.
  • Magnetic Dipole Moments
  • 24.3.1.
  • Experimental Measurements of Fermi Surfaces
  • Spontaneous Magnetization of Ferromagnets
  • 24.3.2.
  • Ferrimagnets
  • 24.3.3.
  • Antiferromagnets
  • 24.4.
  • Mean Field Theory and the Ising Model
  • 24.4.1.
  • Domains
  • 24.4.2.
  • Problems
  • Hysteresis
  • 24.5.
  • Other Order-Disorder Transitions
  • 24.5.1.
  • Alloy Superlattices
  • 24.5.2.
  • Spin Glasses
  • 24.6.
  • Critical Phenomena
  • 24.6.1.
  • References
  • Landau Free Energy
  • 24.6.2.
  • Scaling Theory
  • Problems
  • References
  • 25.
  • Magnetism of Ions and Electrons
  • 25.1.
  • Introduction
  • 25.2.
  • 17.
  • Atomic Magnetism
  • 25.2.1.
  • Hund's Rules
  • 25.2.2.
  • Curie's Law
  • 25.3.
  • Magnetism of the Free-Electron Gas
  • 25.3.1.
  • Pauli Paramagnetism
  • 25.3.2.
  • Transport Phenomena and Fermi Liquid Theory
  • Landau Diamagnetism
  • 25.3.3.
  • Aharonov-Bohm Effect
  • 25.4.
  • Tightly Bound Electrons in Magnetic Fields
  • 25.5.
  • Quantum Hall Effect
  • 25.5.1.
  • Integer Quantum Hall Effect
  • 25.5.2.
  • 17.1.
  • Fractional Quantum Hall Effect
  • Problems
  • References
  • 26.
  • Quantum Mechanics of Interacting Magnetic Moments
  • 26.1.
  • Introduction
  • 26.2.
  • Origin of Ferromagnetism
  • 26.2.1.
  • Introduction
  • Heitler-London Calculation
  • 26.2.2.
  • Spin Hamiltonian
  • 26.3.
  • Heisenberg Model
  • 26.3.1.
  • Indirect Exchange and Superexchange
  • 26.3.2.
  • Ground State
  • 26.3.3.
  • 17.2.
  • Spin Waves
  • 26.3.4.
  • Spin Waves in Antiferromagnets
  • 26.3.5.
  • Comparison with Experiment
  • 26.4.
  • Ferromagnetism in Transition Metals
  • 26.4.1.
  • Stoner Model
  • 26.4.2.
  • Introduction
  • Boltzmann Equation
  • Calculations Within Band Theory
  • 26.5.
  • Spintronics
  • 26.5.1.
  • Giant Magnetoresistance
  • 26.5.2.
  • Spin Torque
  • 26.6.
  • Kondo Effect
  • 26.6.1.
  • 17.2.1.
  • Scaling Theory
  • 26.7.
  • Hubbard Model
  • 26.7.1.
  • Mean-Field Solution
  • Problems
  • References
  • 27.
  • Superconductivity
  • 27.1.
  • Boltzmann Equation
  • Introduction
  • 27.2.
  • Phenomenology of Superconductivity
  • 27.2.1.
  • Phenomenological Free Energy
  • 27.2.2.
  • Thermodynamics of Superconductors
  • 27.2.3.
  • Landau-Ginzburg Free Energy
  • 27.2.4.
  • 17.2.2.
  • Type I and Type II Superconductors
  • 27.2.5.
  • Flux Quantization
  • 27.2.6.
  • The Josephson Effect
  • 27.2.7.
  • Circuits with Josephson Junction Elements
  • 27.2.8.
  • SQUIDS
  • 27.2.9.
  • Including Anomalous Velocity
  • Origin of Josephson's Equations
  • 27.3.
  • Microscopic Theory of Superconductivity
  • 27.3.1.
  • Electron-Ion Interaction
  • 27.3.2.
  • Instability of the Normal State: Cooper Problem
  • 27.3.3.
  • Self-Consistent Ground State
  • 27.3.4.
  • 17.2.3.
  • Thermodynamics of Superconductors
  • 27.3.5.
  • Superconductor in External Magnetic Field
  • 27.3.6.
  • Derivation of Meissner Effect
  • 27.3.7.
  • Comparison with Experiment
  • 27.3.8.
  • High-Temperature Superconductors
  • Problems
  • Relaxation Time Approximation
  • References
  • Appendices
  • A.
  • Lattice Sums and Fourier Transforms
  • A.1.
  • One-Dimensional Sum
  • A.2.
  • Area Under Peaks
  • A.3.
  • Three-Dimensional Sum
  • 17.2.4.
  • A.4.
  • Discrete Case
  • A.5.
  • Convolution
  • A.6.
  • Using the Fast Fourier Transform
  • References
  • B.
  • Variational Techniques
  • B.1.
  • Relation to Rate of Production of Entropy
  • Functionals and Functional Derivatives
  • B.2.
  • Time-Independent Schrodinger Equation
  • B.3.
  • Time-Dependent Schrodinger Equation
  • B.4.
  • Method of Steepest Descent
  • References
  • C.
  • Second Quantization
  • 17.3.
  • C.1.
  • Rules
  • C.1.1.
  • States
  • C.1.2.
  • Operators
  • C.1.3.
  • Hamiltonians
  • C.2.
  • Derivations
  • 16.1.1.
  • Transport Symmetries
  • C.2.1.
  • Bosons
  • C.2.2.
  • Fermions
  • 17.3.1.
  • Onsager Relations
  • 17.4.
  • Thermoelectric Phenomena
  • 17.4.1.
  • Electrical Current
  • 17.4.2.
  • Effective Mass and Holes
  • 17.4.3.
  • Drude Model
  • Mixed Thermal and Electrical Gradients
  • 17.4.4.
  • Wiedemann-Franz Law
  • 17.4.5.
  • Thermopower---Seebeck Effect
  • 17.4.6.
  • Peltier Effect
  • 17.4.7.
  • Thomson Effect
  • 17.4.8.
  • 16.2.
  • Hall Effect
  • 17.4.9.
  • Magnetoresistance
  • 17.4.10.
  • Anomalous Hall Effect
  • 17.5.
  • Fermi Liquid Theory
  • 17.5.1.
  • Basic Ideas
  • 17.5.2.
  • Semiclassical Electron Dynamics
  • Statistical Mechanics of Quasi-Particles
  • 17.5.3.
  • Effective Mass
  • 17.5.4.
  • Specific Heat
  • 17.5.5.
  • Fermi Liquid Parameters
  • 17.5.6.
  • Traveling Waves
  • 17.5.7.
  • 16.2.1.
  • Comparison with Experiment in 3He
  • Problems
  • References
  • 18.
  • Microscopic Theories of Conduction
  • 18.1.
  • Introduction
  • 18.2.
  • Weak Scattering Theory of Conductivity
  • 18.2.1.
Control code
ocn664839098
Dimensions
26 cm
Edition
2nd ed
Extent
xxvii, 952 p.
Isbn
9780470617984
Isbn Type
(hardback)
Lccn
2010036833
Other physical details
ill.
System control number
(OCoLC)664839098
Label
Condensed matter physics, Michael P. Marder
Publication
Bibliography note
Includes bibliographical references and index
Contents
  • Why are Solids Crystalline?
  • Reciprocal Lattice
  • 3.2.6.
  • Miller Indices
  • 3.2.7.
  • Scattering from a Lattice with a Basis
  • 3.3.
  • Experimental Methods
  • 3.3.1.
  • Laue Method
  • 3.3.2.
  • 1.2.
  • Rotating Crystal Method
  • 3.3.3.
  • Powder Method
  • 3.4.
  • Further Features of Scattering Experiments
  • 3.4.1.
  • Interaction of X-Rays with Matter
  • 3.4.2.
  • Production of X-Rays
  • 3.4.3.
  • Two-Dimensional Lattices
  • Neutrons
  • 3.4.4.
  • Electrons
  • 3.4.5.
  • Deciphering Complex Structures
  • 3.4.6.
  • Accuracy of Structure Determinations
  • 3.5.
  • Correlation Functions
  • 3.5.1.
  • 1.2.1.
  • Why Bragg Peaks Survive Atomic Motions
  • 3.5.2.
  • Extended X-Ray Absorption Fine Structure (EXAFS)
  • 3.5.3.
  • Dynamic Light Scattering
  • 3.5.4.
  • Application to Dilute Solutions
  • Problems
  • References
  • 4.
  • Bravais Lattices
  • Surfaces and Interfaces
  • 4.1.
  • Introduction
  • 4.2.
  • Geometry of Interfaces
  • 4.2.1.
  • Coherent and Commensurate Interfaces
  • 4.2.2.
  • Stacking Period and Interplanar Spacing
  • 4.2.3.
  • 1.2.2.
  • Other Topics in Surface Structure
  • 4.3.
  • Experimental Observation and Creation of Surfaces
  • 4.3.1.
  • Low-Energy Electron Diffraction (LEED)
  • 4.3.2.
  • Reflection High-Energy Electron Diffraction (RHEED)
  • 4.3.3.
  • Molecular Beam Epitaxy (MBE)
  • 4.3.4.
  • Enumeration of Two-Dimensional Bravais Lattices
  • Field Ion Microscopy (FIM)
  • 4.3.5.
  • Scanning Tunneling Microscopy (STM)
  • 4.3.6.
  • Atomic Force Microscopy (AFM)
  • 4.3.7.
  • High Resolution Electron Microscopy (HREM)
  • Problems
  • References
  • 5.
  • 1.2.3.
  • Beyond Crystals
  • 5.1.
  • Introduction
  • 5.2.
  • Diffusion and Random Variables
  • 5.2.1.
  • Brownian Motion and the Diffusion Equation
  • 5.2.2.
  • Diffusion
  • 5.2.3.
  • Lattices with Bases
  • Derivation from Master Equation
  • 5.2.4.
  • Connection between Diffusion and Random Walks
  • 5.3.
  • Alloys
  • 5.3.1.
  • Equilibrium Structures
  • 5.3.2.
  • Phase Diagrams
  • 5.3.3.
  • 1.2.4.
  • Superlattices
  • 5.3.4.
  • Phase Separation
  • 5.3.5.
  • Nonequilibrium Structures in Alloys
  • 5.3.6.
  • Dynamics of Phase Separation
  • 5.4.
  • Simulations
  • 5.4.1.
  • Machine generated contents note:
  • Primitive Cells
  • Monte Carlo
  • 5.4.2.
  • Molecular Dynamics
  • 5.5.
  • Liquids
  • 5.5.1.
  • Order Parameters and Long- and Short-Range Order
  • 5.5.2.
  • Packing Spheres
  • 5.6.
  • 1.2.5.
  • Glasses
  • 5.7.
  • Liquid Crystals
  • 5.7.1.
  • Nematics, Cholesterics, and Smectics
  • 5.7.2.
  • Liquid Crystal Order Parameter
  • 5.8.
  • Polymers
  • 5.8.1.
  • Wigner-Seitz Cells
  • Ideal Radius of Gyration
  • 5.9.
  • Colloids and Diffusing-Wave Scattering
  • 5.9.1.
  • Colloids
  • 5.9.2.
  • Diffusing-Wave Spectroscopy
  • 5.10.
  • Quasicrystals
  • 5.10.1.
  • 1.3.
  • One-Dimensional Quasicrystal
  • 5.10.2.
  • Two-Dimensional Quasicrystals---Penrose Tiles
  • 5.10.3.
  • Experimental Observations
  • 5.11.
  • Fullerenes and nanotubes
  • Problems
  • References
  • II.
  • Symmetries
  • Electronic Structure
  • 6.
  • The Free Fermi Gas and Single Electron Model
  • 6.1.
  • Introduction
  • 6.2.
  • Starting Hamiltonian
  • 6.3.
  • Densities of States
  • 6.3.1.
  • 1.3.1.
  • Definition of Density of States D
  • 6.3.2.
  • Results for Free Electrons
  • 6.4.
  • Statistical Mechanics of Noninteracting Electrons
  • 6.5.
  • Sommerfeld Expansion
  • 6.5.1.
  • Specific Heat of Noninteracting Electrons at Low Temperatures
  • Problems
  • The Space Group
  • References
  • 7.
  • Non-Interacting Electrons in a Periodic Potential
  • 7.1.
  • Introduction
  • 7.2.
  • Translational Symmetry---Bloch's Theorem
  • 7.2.1.
  • One Dimension
  • 7.2.2.
  • 1.3.2.
  • Bloch's Theorem in Three Dimensions
  • 7.2.3.
  • Formal Demonstration of Bloch's Theorem
  • 7.2.4.
  • Additional Implications of Bloch's Theorem
  • 7.2.5.
  • Van Hove Singularities
  • 7.2.6.
  • Kronig-Penney Model
  • 7.3.
  • Translation and Point Groups
  • Rotational Symmetry---Group Representations
  • 7.3.1.
  • Classes and Characters
  • 7.3.2.
  • Consequences of point group symmetries for Schrodinger's equation
  • Problems
  • References
  • 8.
  • Nearly Free and Tightly Bound Electrons
  • 8.1.
  • 1.3.3.
  • Introduction
  • 8.2.
  • Nearly Free Electrons
  • 8.2.1.
  • Degenerate Perturbation Theory
  • 8.3.
  • Brillouin Zones
  • 8.3.1.
  • Nearly Free Electron Fermi Surfaces
  • 8.4.
  • I.
  • Role of Symmetry
  • Tightly Bound Electrons
  • 8.4.1.
  • Linear Combinations of Atomic Orbitals
  • 8.4.2.
  • Wannier Functions
  • 8.4.3.
  • Geometric Phases
  • 8.4.4.
  • Tight Binding Model
  • Problems
  • Problems
  • References
  • 9.
  • Electron-Electron Interactions
  • 9.1.
  • Introduction
  • 9.2.
  • Hartree and Hartree-Fock Equations
  • 9.2.1.
  • Variational Principle
  • 9.2.2.
  • References
  • Hartree-Fock Equations
  • 9.2.3.
  • Numerical Implementation
  • 9.2.4.
  • Hartree-Fock Equations for Jellium
  • 9.3.
  • Density Functional Theory
  • 9.3.1.
  • Thomas-Fermi Theory
  • 9.3.2.
  • 2.
  • Stability of Matter
  • 9.4.
  • Quantum Monte Carlo
  • 9.4.1.
  • Integrals
  • Monte Carlo
  • 9.4.2.
  • Quantum Monte Carlo Methods
  • 9.5.
  • Kohn-Sham Equations
  • Three-Dimensional Lattices
  • Problems
  • References
  • 10.
  • Realistic Calculations in Solids
  • 10.1.
  • Introduction
  • 10.2.
  • Numerical Methods
  • 10.2.1.
  • Pseudopotentials and Orthogonalized Planes Waves (OPW)
  • 2.1.
  • 10.2.2.
  • Linear Combination of Atomic Orbitals (LCAO)
  • 10.2.3.
  • Plane Waves
  • 10.2.4.
  • Linear Augmented Plane Waves (LAPW)
  • 10.3.
  • Definition of Metals, Insulators, and Semiconductors
  • 10.4.
  • Brief Survey of the Periodic Table
  • Introduction
  • 10.4.1.
  • Nearly Free Electron Metals
  • 10.4.2.
  • Noble Gases
  • 10.4.3.
  • Semiconductors
  • 10.4.4.
  • Transition Metals
  • 10.4.5.
  • Rare Earths
  • 2.2.
  • Problems
  • References
  • III.
  • Mechanical Properties
  • 11.
  • Cohesion of Solids
  • 11.1.
  • Introduction
  • 11.1.1.
  • Radii of Atoms
  • Monatomic Lattices
  • 11.2.
  • Noble Gases
  • 11.3.
  • Ionic Crystals
  • 11.3.1.
  • Ewald Sums
  • 11.4.
  • Metals
  • 11.4.1.
  • Use of Pseudopotentials
  • 2.2.1.
  • 11.5.
  • Band Structure Energy
  • 11.5.1.
  • Peierls Distortion
  • 11.5.2.
  • Structural Phase Transitions
  • 11.6.
  • Hydrogen-Bonded Solids
  • 11.7.
  • Cohesive Energy from Band Calculations
  • Atomic Structure
  • The Simple Cubic Lattice
  • 11.8.
  • Classical Potentials
  • Problems
  • References
  • 12.
  • Elasticity
  • 12.1.
  • Introduction
  • 12.2.
  • Nonlinear Elasticity
  • 2.2.2.
  • 12.2.1.
  • Rubber Elasticity
  • 12.2.2.
  • Larger Extensions of Rubber
  • 12.3.
  • Linear Elasticity
  • 12.3.1.
  • Solids of Cubic Symmetry
  • 12.3.2.
  • Isotropic Solids
  • The Face-Centered Cubic Lattice
  • 12.4.
  • Other Constitutive Laws
  • 12.4.1.
  • Liquid Crystals
  • 12.4.2.
  • Granular Materials
  • Problems
  • References
  • 13.
  • Phonons
  • 2.2.3.
  • 13.1.
  • Introduction
  • 13.2.
  • Vibrations of a Classical Lattice
  • 13.2.1.
  • Classical Vibrations in One Dimensions
  • 13.2.2.
  • Classical Vibrations in Three Dimensions
  • 13.2.3.
  • Normal Modes
  • The Body-Centered Cubic Lattice
  • 13.2.4.
  • Lattice with a Basis
  • 13.3.
  • Vibrations of a Quantum-Mwechanical Lattice
  • 13.3.1.
  • Phonon Specific Heat
  • 13.3.2.
  • Einstein and Debye Models
  • 13.3.3.
  • Thermal Expansion
  • 2.2.4.
  • 13.4.
  • Inelastic Scattering from Phonons
  • 13.4.1.
  • Neutron Scattering
  • 13.4.2.
  • Formal Theory of Neutron Scattering
  • 13.4.3.
  • Averaging Exponentials
  • 13.4.4.
  • Evaluation of Structure Factor
  • The Hexagonal Lattice
  • 13.4.5.
  • Kohn Anomalies
  • 13.5.
  • The Mossbauer Effect
  • Problems
  • References
  • 14.
  • Dislocations and Cracks
  • 14.1.
  • Introduction
  • 2.2.5.
  • 14.2.
  • Dislocations
  • 14.2.1.
  • Experimental Observations of Dislocations
  • 14.2.2.
  • Force to Move a Dislocation
  • 14.2.3.
  • One-Dimensional Dislocations: Frenkel-Kontorova Model
  • 14.3.
  • Two-Dimensional Dislocations and Hexatic Phases
  • The Hexagonal Close-Packed Lattice
  • 14.3.1.
  • Impossibility of Crystalline Order in Two Dimensions
  • 14.3.2.
  • Orientational Order
  • 14.3.3.
  • Kosterlitz-Thouless-Berezinskii Transition
  • 14.4.
  • Cracks
  • 14.4.1.
  • Fracture of a Strip
  • 2.2.6.
  • 14.4.2.
  • Stresses Around an Elliptical Hole
  • 14.4.3.
  • Stress Intensity Factor
  • 14.4.4.
  • Atomic Aspects of Fracture
  • Problems
  • References
  • 15.
  • Fluid Mechanics
  • 1.
  • The Diamond Lattice
  • 15.1.
  • Introduction
  • 15.2.
  • Newtonian Fluids
  • 15.2.1.
  • Euler's Equation
  • 15.2.2.
  • Navier-Stokes Equation
  • 15.3.
  • Polymeric Solutions
  • 2.3.
  • 15.4.
  • Plasticity
  • 15.5.
  • Superfluid 4He
  • 15.5.1.
  • Two-Fluid Hydrodynamics
  • 15.5.2.
  • Second Sound
  • 15.5.3.
  • Direct Observation of Two Fluids
  • Compounds
  • 15.5.4.
  • Origin of Superfluidity
  • 15.5.5.
  • Lagrangian Theory of Wave Function
  • 15.5.6.
  • Superfluid 3He
  • Problems
  • References
  • IV.
  • Electron Transport
  • 2.3.1.
  • 16.
  • Dynamics of Bloch Electrons
  • Rocksalt---Sodium Chloride
  • 2.3.2.
  • Cesium Chloride
  • 2.3.3.
  • Fluorite---Calcium Fluoride
  • 2.3.4.
  • The Idea of Crystals
  • Zincblende---Zinc Sulfide
  • 2.3.5.
  • Wurtzite---Zinc Oxide
  • 2.3.6.
  • Perovskite---Calcium Titanate
  • 2.4.
  • Classification of Lattices by Symmetry
  • 2.4.1.
  • Fourteen Bravais Lattices and Seven Crystal Systems
  • 2.5.
  • 1.1.
  • Symmetries of Lattices with Bases
  • 2.5.1.
  • Thirty-Two Crystallographic Point Groups
  • 2.5.2.
  • Two Hundred Thirty Distinct Lattices
  • 2.6.
  • Some Macroscopic Implications of Microscopic Symmetries
  • 2.6.1.
  • Pyroelectricity
  • 2.6.2.
  • Introduction
  • Piezoelectricity
  • 2.6.3.
  • Optical Activity
  • Problems
  • References
  • 3.
  • Scattering and Structures
  • 3.1.
  • Introduction
  • 3.2.
  • 1.1.1.
  • Theory of Scattering from Crystals
  • 3.2.1.
  • Special Conditions for Scattering
  • 3.2.2.
  • Elastic Scattering from Single Atom
  • 3.2.3.
  • Wave Scattering from Many Atoms
  • 3.2.4.
  • Lattice Sums
  • 3.2.5.
  • Bloch Oscillations
  • General Formula for Relaxation Time
  • 18.2.2.
  • Matthiessen's Rule
  • 18.2.3.
  • Fluctuations
  • 18.3.
  • Metal---Insulator Transitions in Disordered Solids
  • 18.3.1.
  • Impurities and Disorder
  • 18.3.2.
  • 16.2.2.
  • Non-Compensated Impurities and the Mott Transition
  • 18.4.
  • Compensated Impurity Scattering and Green's Functions
  • 18.4.1.
  • Tight-Binding Models of Disordered Solids
  • 18.4.2.
  • Green's Functions
  • 18.4.3.
  • Single Impurity
  • 18.4.4.
  • K. P. Method
  • Coherent Potential Approximation
  • 18.5.
  • Localization
  • 18.5.1.
  • Exact Results in One Dimension
  • 18.5.2.
  • Scaling Theory of Localization
  • 18.5.3.
  • Comparison with Experiment
  • 18.6.
  • 16.2.3.
  • Luttinger Liquids
  • 18.6.1.
  • Density of States
  • Problems
  • References
  • 19.
  • Electronics
  • 19.1.
  • Introduction
  • 19.2.
  • Effective Mass
  • Metal Interfaces
  • 19.2.2.
  • Schottky Barrier
  • 19.2.3.
  • Contact Potentials
  • 19.3.
  • Semiconductors
  • 19.3.1.
  • Pure Semiconductors
  • 19.3.2.
  • 16.3.
  • Semiconductor in Equilibrium
  • 19.3.3.
  • Intrinsic Semiconductor
  • 19.3.4.
  • Extrinsic Semiconductor
  • 19.4.
  • Diodes and Transistors
  • 19.4.1.
  • Surface States
  • 19.4.2.
  • Noninteracting Electrons in an Electric Field
  • Semiconductor Junctions
  • 19.4.3.
  • Boltzmann Equation for Semiconductors
  • 19.4.4.
  • Detailed Theory of Rectification
  • 19.4.5.
  • Transistor
  • 19.5.
  • Inversion Layers
  • 19.5.1.
  • 16.3.1.
  • Heterostructures
  • 19.5.2.
  • Quantum Point Contact
  • 19.5.3.
  • Quantum Dot
  • Problems
  • References
  • V.
  • Optical Properties
  • 20.
  • Zener Tunneling
  • Phenomenological Theory
  • 20.1.
  • Introduction
  • 20.2.
  • Maxwell's Equations
  • 20.2.1.
  • Traveling Waves
  • 20.2.2.
  • Mechanical Oscillators as Dielectric Function
  • 20.3.
  • 16.4.
  • Kramers-Kronig Relations
  • 20.3.1.
  • Application to Optical Experiments
  • 20.4.
  • The Kubo-Greenwood Formula
  • 20.4.1.
  • Born Approximation
  • 20.4.2.
  • Susceptibility
  • 20.4.3.
  • Contents note continued:
  • Semiclassical Equations from Wave Packets
  • Many-Body Green Functions
  • Problems
  • References
  • 21.
  • Optical Properties of Semiconductors
  • 21.1.
  • Introduction
  • 21.2.
  • Cyclotron Resonance
  • 21.2.1.
  • 16.4.1.
  • Electron Energy Surfaces
  • 21.3.
  • Semiconductor Band Gaps
  • 21.3.1.
  • Direct Transitions
  • 21.3.2.
  • Indirect Transitions
  • 21.4.
  • Excitons
  • 21.4.1.
  • Formal Dynamics of Wave Packets
  • Mott---Wannier Excitons
  • 21.4.2.
  • Frenkel Excitons
  • 21.4.3.
  • Electron---Hole Liquid
  • 21.5.
  • Optoelectronics
  • 21.5.1.
  • Solar Cells
  • 21.5.2.
  • 16.4.2.
  • Lasers
  • Problems
  • References
  • 22.
  • Optical Properties of Insulators
  • 22.1.
  • Introduction
  • 22.2.
  • Polarization
  • 22.2.1.
  • Dynamics from Lagrangian
  • Ferroelectrics
  • 22.2.2.
  • Berry phase theory of polarization
  • 22.2.3.
  • Clausius-Mossotti Relation
  • 22.3.
  • Optical Modes in Ionic Crystals
  • 22.3.1.
  • Polaritons
  • 22.3.2.
  • 16.5.
  • Polarons
  • 22.3.3.
  • Experimental Observations of Polarons
  • 22.4.
  • Point Defects and Color Centers
  • 22.4.1.
  • Vacancies
  • 22.4.2.
  • F Centers
  • 22.4.3.
  • Quantizing Semiclassical Dynamics
  • Electron Spin Resonance and Electron Nuclear Double Resonance
  • 22.4.4.
  • Other Centers
  • 22.4.5.
  • Franck-Condon Effect
  • 22.4.6.
  • Urbach Tails
  • Problems
  • References
  • 23.
  • 16.5.1.
  • Optical Properties of Metals and Inelastic Scattering
  • 23.1.
  • Introduction
  • 23.1.1.
  • Plasma Frequency
  • 23.2.
  • Metals at Low Frequencies
  • 23.2.1.
  • Anomalous Skin Effect
  • 23.3.
  • Wannier-Stark Ladders
  • Plasmons
  • 23.3.1.
  • Experimental Observation of Plasmons
  • 23.4.
  • Interband Transitions
  • 23.5.
  • Brillouin and Raman Scattering
  • 23.5.1.
  • Brillouin Scattering
  • 23.5.2.
  • 16.5.2.
  • Raman Scattering
  • 23.5.3.
  • Inelastic X-Ray Scattering
  • 23.6.
  • Photoemission
  • 23.6.1.
  • Measurement of Work Functions
  • 23.6.2.
  • Angle-Resolved Photoemission
  • 23.6.3.
  • 16.1.
  • de Haas-van Alphen Effect
  • Core-Level Photoemission and Charge-Transfer Insulators
  • Problems
  • References
  • VI.
  • Magnetism
  • 24.
  • Classical Theories of Magnetism and Ordering
  • 24.1.
  • Introduction
  • 24.2.
  • 16.5.3.
  • Three Views of Magnetism
  • 24.2.1.
  • From Magnetic Moments
  • 24.2.2.
  • From Conductivity
  • 24.2.3.
  • From a Free Energy
  • 24.3.
  • Magnetic Dipole Moments
  • 24.3.1.
  • Experimental Measurements of Fermi Surfaces
  • Spontaneous Magnetization of Ferromagnets
  • 24.3.2.
  • Ferrimagnets
  • 24.3.3.
  • Antiferromagnets
  • 24.4.
  • Mean Field Theory and the Ising Model
  • 24.4.1.
  • Domains
  • 24.4.2.
  • Problems
  • Hysteresis
  • 24.5.
  • Other Order-Disorder Transitions
  • 24.5.1.
  • Alloy Superlattices
  • 24.5.2.
  • Spin Glasses
  • 24.6.
  • Critical Phenomena
  • 24.6.1.
  • References
  • Landau Free Energy
  • 24.6.2.
  • Scaling Theory
  • Problems
  • References
  • 25.
  • Magnetism of Ions and Electrons
  • 25.1.
  • Introduction
  • 25.2.
  • 17.
  • Atomic Magnetism
  • 25.2.1.
  • Hund's Rules
  • 25.2.2.
  • Curie's Law
  • 25.3.
  • Magnetism of the Free-Electron Gas
  • 25.3.1.
  • Pauli Paramagnetism
  • 25.3.2.
  • Transport Phenomena and Fermi Liquid Theory
  • Landau Diamagnetism
  • 25.3.3.
  • Aharonov-Bohm Effect
  • 25.4.
  • Tightly Bound Electrons in Magnetic Fields
  • 25.5.
  • Quantum Hall Effect
  • 25.5.1.
  • Integer Quantum Hall Effect
  • 25.5.2.
  • 17.1.
  • Fractional Quantum Hall Effect
  • Problems
  • References
  • 26.
  • Quantum Mechanics of Interacting Magnetic Moments
  • 26.1.
  • Introduction
  • 26.2.
  • Origin of Ferromagnetism
  • 26.2.1.
  • Introduction
  • Heitler-London Calculation
  • 26.2.2.
  • Spin Hamiltonian
  • 26.3.
  • Heisenberg Model
  • 26.3.1.
  • Indirect Exchange and Superexchange
  • 26.3.2.
  • Ground State
  • 26.3.3.
  • 17.2.
  • Spin Waves
  • 26.3.4.
  • Spin Waves in Antiferromagnets
  • 26.3.5.
  • Comparison with Experiment
  • 26.4.
  • Ferromagnetism in Transition Metals
  • 26.4.1.
  • Stoner Model
  • 26.4.2.
  • Introduction
  • Boltzmann Equation
  • Calculations Within Band Theory
  • 26.5.
  • Spintronics
  • 26.5.1.
  • Giant Magnetoresistance
  • 26.5.2.
  • Spin Torque
  • 26.6.
  • Kondo Effect
  • 26.6.1.
  • 17.2.1.
  • Scaling Theory
  • 26.7.
  • Hubbard Model
  • 26.7.1.
  • Mean-Field Solution
  • Problems
  • References
  • 27.
  • Superconductivity
  • 27.1.
  • Boltzmann Equation
  • Introduction
  • 27.2.
  • Phenomenology of Superconductivity
  • 27.2.1.
  • Phenomenological Free Energy
  • 27.2.2.
  • Thermodynamics of Superconductors
  • 27.2.3.
  • Landau-Ginzburg Free Energy
  • 27.2.4.
  • 17.2.2.
  • Type I and Type II Superconductors
  • 27.2.5.
  • Flux Quantization
  • 27.2.6.
  • The Josephson Effect
  • 27.2.7.
  • Circuits with Josephson Junction Elements
  • 27.2.8.
  • SQUIDS
  • 27.2.9.
  • Including Anomalous Velocity
  • Origin of Josephson's Equations
  • 27.3.
  • Microscopic Theory of Superconductivity
  • 27.3.1.
  • Electron-Ion Interaction
  • 27.3.2.
  • Instability of the Normal State: Cooper Problem
  • 27.3.3.
  • Self-Consistent Ground State
  • 27.3.4.
  • 17.2.3.
  • Thermodynamics of Superconductors
  • 27.3.5.
  • Superconductor in External Magnetic Field
  • 27.3.6.
  • Derivation of Meissner Effect
  • 27.3.7.
  • Comparison with Experiment
  • 27.3.8.
  • High-Temperature Superconductors
  • Problems
  • Relaxation Time Approximation
  • References
  • Appendices
  • A.
  • Lattice Sums and Fourier Transforms
  • A.1.
  • One-Dimensional Sum
  • A.2.
  • Area Under Peaks
  • A.3.
  • Three-Dimensional Sum
  • 17.2.4.
  • A.4.
  • Discrete Case
  • A.5.
  • Convolution
  • A.6.
  • Using the Fast Fourier Transform
  • References
  • B.
  • Variational Techniques
  • B.1.
  • Relation to Rate of Production of Entropy
  • Functionals and Functional Derivatives
  • B.2.
  • Time-Independent Schrodinger Equation
  • B.3.
  • Time-Dependent Schrodinger Equation
  • B.4.
  • Method of Steepest Descent
  • References
  • C.
  • Second Quantization
  • 17.3.
  • C.1.
  • Rules
  • C.1.1.
  • States
  • C.1.2.
  • Operators
  • C.1.3.
  • Hamiltonians
  • C.2.
  • Derivations
  • 16.1.1.
  • Transport Symmetries
  • C.2.1.
  • Bosons
  • C.2.2.
  • Fermions
  • 17.3.1.
  • Onsager Relations
  • 17.4.
  • Thermoelectric Phenomena
  • 17.4.1.
  • Electrical Current
  • 17.4.2.
  • Effective Mass and Holes
  • 17.4.3.
  • Drude Model
  • Mixed Thermal and Electrical Gradients
  • 17.4.4.
  • Wiedemann-Franz Law
  • 17.4.5.
  • Thermopower---Seebeck Effect
  • 17.4.6.
  • Peltier Effect
  • 17.4.7.
  • Thomson Effect
  • 17.4.8.
  • 16.2.
  • Hall Effect
  • 17.4.9.
  • Magnetoresistance
  • 17.4.10.
  • Anomalous Hall Effect
  • 17.5.
  • Fermi Liquid Theory
  • 17.5.1.
  • Basic Ideas
  • 17.5.2.
  • Semiclassical Electron Dynamics
  • Statistical Mechanics of Quasi-Particles
  • 17.5.3.
  • Effective Mass
  • 17.5.4.
  • Specific Heat
  • 17.5.5.
  • Fermi Liquid Parameters
  • 17.5.6.
  • Traveling Waves
  • 17.5.7.
  • 16.2.1.
  • Comparison with Experiment in 3He
  • Problems
  • References
  • 18.
  • Microscopic Theories of Conduction
  • 18.1.
  • Introduction
  • 18.2.
  • Weak Scattering Theory of Conductivity
  • 18.2.1.
Control code
ocn664839098
Dimensions
26 cm
Edition
2nd ed
Extent
xxvii, 952 p.
Isbn
9780470617984
Isbn Type
(hardback)
Lccn
2010036833
Other physical details
ill.
System control number
(OCoLC)664839098

Library Locations

    • ManawatÅ« LibraryBorrow it
      Tennent Drive, Palmerston North, Palmerston North, 4472, NZ
      -40.385340 175.617349
Processing Feedback ...