The Resource Bias and causation : models and judgment for valid comparisons, Herbert I. Weisberg
Bias and causation : models and judgment for valid comparisons, Herbert I. Weisberg
Resource Information
The item Bias and causation : models and judgment for valid comparisons, Herbert I. Weisberg represents a specific, individual, material embodiment of a distinct intellectual or artistic creation found in Massey University Library, University of New Zealand.This item is available to borrow from 1 library branch.
Resource Information
The item Bias and causation : models and judgment for valid comparisons, Herbert I. Weisberg represents a specific, individual, material embodiment of a distinct intellectual or artistic creation found in Massey University Library, University of New Zealand.
This item is available to borrow from 1 library branch.
- Language
- eng
- Extent
- xv, 348 p.
- Contents
-
- 1. What Is Bias?
- 1.1. Apples and Oranges
- 1.2. Statistics vs. Causation
- 1.3. Bias in the Real World
- Guidepost 1
- 2. Causality and Comparative Studies
- 2.1. Bias and Causation
- 2.2. Causality and Counterfactuals
- 2.3. Why Counterfactuals?
- 2.4. Causal Effects
- 2.5. Empirical Effects
- Guidepost 2
- 3. Estimating Causal Effects
- 3.1. External Validity
- 3.2. Measures of Empirical Effects
- 3.3. Difference of Means
- 3.4. Risk Difference and Risk Ratio
- 3.5. Potential Outcomes
- 3.6. Time-Dependent Outcomes
- 3.7. Intermediate Variables
- 3.8. Measurement of Exposure
- 3.9. Measurement of the Outcome Value
- 3.10. Confounding Bias
- Guidepost 3
- 4. Varieties of Bias
- 4.1. Research Designs and Bias
- 4.2. Bias in Biomedical Research
- 4.3. Bias in Social Science Research
- 4.4. Sources of Bias: A Proposed Taxonomy
- Guidepost 4
- 5. Selection Bias
- 5.1. Selection Processes and Bias
- 5.2. Traditional Selection Model: Dichotomous Outcome
- 5.3. Causal Selection Model: Dichotomous Outcome
- 5.4. Randomized Experiments
- 5.5. Observational Cohort Studies
- 5.6. Traditional Selection Model: Numerical Outcome
- 5.7. Causal Selection Model: Numerical Outcome
- Guidepost 5
- Appendix
- 6. Confounding: An Enigma?
- 6.1. What is the Real Problem?
- 6.2. Confounding and Extraneous Causes
- 6.3. Confounding and Statistical Control
- 6.4. Confounding and Comparability
- 6.5. Confounding and the Assignment Mechanism
- 6.6. Confounding and Model Specification
- Guidepost 6
- 7. Confounding: Essence, Correction and Detection
- 7.1. Essence: The Nature of Confounding
- 7.2. Correction: Statistical Control for Confounding
- 7.3. Detection: Adequacy of Statistical Adjustment
- Guidepost 7
- Appendix
- 8. Intermediate Causal Factors
- 8.1. Direct and Indirect Effects
- 8.2. Principal Stratification
- 8.3. Noncompliance
- 8.4. Attrition
- Guidepost 8
- 9. Information Bias
- 9.1. Basic Concepts
- 9.2. Classical Measurement Model: Dichotomous Outcome
- 9.3. Causal Measurement Model: Dichotomous Outcome
- 9.4. Classical Measurement Model: Numerical Outcome
- 9.5. Causal Measurement Model: Numerical Outcome
- 9.6. Covariates Measured with Error
- Guidepost 9
- 10. Sources of Bias
- 10.1. Sampling
- 10.2. Assignment
- 10.3. Adherence
- 10.4. Exposure Ascertainment
- 10.5. Outcome Measurement
- Guidepost 10
- 11. Contending with Bias
- 11.1. Conventional Solutions
- 11.2. Standard Statistical Paradigm
- 11.3. Toward a Broader Perspective
- 11.4. Real-World Bias Revisited
- 11.5. Statistics and Causation
- Isbn
- 9780470286395
- Label
- Bias and causation : models and judgment for valid comparisons
- Title
- Bias and causation
- Title remainder
- models and judgment for valid comparisons
- Statement of responsibility
- Herbert I. Weisberg
- Language
- eng
- Cataloging source
- DLC
- http://library.link/vocab/creatorDate
- 1944-
- http://library.link/vocab/creatorName
- Weisberg, Herbert I.
- Illustrations
- illustrations
- Index
- index present
- Literary form
- non fiction
- Nature of contents
- bibliography
- Series statement
- Wiley series in probability and statistics
- http://library.link/vocab/subjectName
-
- Discriminant analysis
- Paired comparisons (Statistics)
- Label
- Bias and causation : models and judgment for valid comparisons, Herbert I. Weisberg
- Bibliography note
- Includes bibliographical references and index
- Contents
- 1. What Is Bias? -- 1.1. Apples and Oranges -- 1.2. Statistics vs. Causation -- 1.3. Bias in the Real World -- Guidepost 1 -- 2. Causality and Comparative Studies -- 2.1. Bias and Causation -- 2.2. Causality and Counterfactuals -- 2.3. Why Counterfactuals? -- 2.4. Causal Effects -- 2.5. Empirical Effects -- Guidepost 2 -- 3. Estimating Causal Effects -- 3.1. External Validity -- 3.2. Measures of Empirical Effects -- 3.3. Difference of Means -- 3.4. Risk Difference and Risk Ratio -- 3.5. Potential Outcomes -- 3.6. Time-Dependent Outcomes -- 3.7. Intermediate Variables -- 3.8. Measurement of Exposure -- 3.9. Measurement of the Outcome Value -- 3.10. Confounding Bias -- Guidepost 3 -- 4. Varieties of Bias -- 4.1. Research Designs and Bias -- 4.2. Bias in Biomedical Research -- 4.3. Bias in Social Science Research -- 4.4. Sources of Bias: A Proposed Taxonomy -- Guidepost 4 -- 5. Selection Bias -- 5.1. Selection Processes and Bias -- 5.2. Traditional Selection Model: Dichotomous Outcome -- 5.3. Causal Selection Model: Dichotomous Outcome -- 5.4. Randomized Experiments -- 5.5. Observational Cohort Studies -- 5.6. Traditional Selection Model: Numerical Outcome -- 5.7. Causal Selection Model: Numerical Outcome -- Guidepost 5 -- Appendix -- 6. Confounding: An Enigma? -- 6.1. What is the Real Problem? -- 6.2. Confounding and Extraneous Causes -- 6.3. Confounding and Statistical Control -- 6.4. Confounding and Comparability -- 6.5. Confounding and the Assignment Mechanism -- 6.6. Confounding and Model Specification -- Guidepost 6 -- 7. Confounding: Essence, Correction and Detection -- 7.1. Essence: The Nature of Confounding -- 7.2. Correction: Statistical Control for Confounding -- 7.3. Detection: Adequacy of Statistical Adjustment -- Guidepost 7 -- Appendix -- 8. Intermediate Causal Factors -- 8.1. Direct and Indirect Effects -- 8.2. Principal Stratification -- 8.3. Noncompliance -- 8.4. Attrition -- Guidepost 8 -- 9. Information Bias -- 9.1. Basic Concepts -- 9.2. Classical Measurement Model: Dichotomous Outcome -- 9.3. Causal Measurement Model: Dichotomous Outcome -- 9.4. Classical Measurement Model: Numerical Outcome -- 9.5. Causal Measurement Model: Numerical Outcome -- 9.6. Covariates Measured with Error -- Guidepost 9 -- 10. Sources of Bias -- 10.1. Sampling -- 10.2. Assignment -- 10.3. Adherence -- 10.4. Exposure Ascertainment -- 10.5. Outcome Measurement -- Guidepost 10 -- 11. Contending with Bias -- 11.1. Conventional Solutions -- 11.2. Standard Statistical Paradigm -- 11.3. Toward a Broader Perspective -- 11.4. Real-World Bias Revisited -- 11.5. Statistics and Causation
- Control code
- ocn500185781
- Dimensions
- 25 cm
- Extent
- xv, 348 p.
- Isbn
- 9780470286395
- Isbn Type
- (cloth)
- Lccn
- 2009054242
- Other physical details
- ill.
- System control number
- (OCoLC)500185781
- Label
- Bias and causation : models and judgment for valid comparisons, Herbert I. Weisberg
- Bibliography note
- Includes bibliographical references and index
- Contents
- 1. What Is Bias? -- 1.1. Apples and Oranges -- 1.2. Statistics vs. Causation -- 1.3. Bias in the Real World -- Guidepost 1 -- 2. Causality and Comparative Studies -- 2.1. Bias and Causation -- 2.2. Causality and Counterfactuals -- 2.3. Why Counterfactuals? -- 2.4. Causal Effects -- 2.5. Empirical Effects -- Guidepost 2 -- 3. Estimating Causal Effects -- 3.1. External Validity -- 3.2. Measures of Empirical Effects -- 3.3. Difference of Means -- 3.4. Risk Difference and Risk Ratio -- 3.5. Potential Outcomes -- 3.6. Time-Dependent Outcomes -- 3.7. Intermediate Variables -- 3.8. Measurement of Exposure -- 3.9. Measurement of the Outcome Value -- 3.10. Confounding Bias -- Guidepost 3 -- 4. Varieties of Bias -- 4.1. Research Designs and Bias -- 4.2. Bias in Biomedical Research -- 4.3. Bias in Social Science Research -- 4.4. Sources of Bias: A Proposed Taxonomy -- Guidepost 4 -- 5. Selection Bias -- 5.1. Selection Processes and Bias -- 5.2. Traditional Selection Model: Dichotomous Outcome -- 5.3. Causal Selection Model: Dichotomous Outcome -- 5.4. Randomized Experiments -- 5.5. Observational Cohort Studies -- 5.6. Traditional Selection Model: Numerical Outcome -- 5.7. Causal Selection Model: Numerical Outcome -- Guidepost 5 -- Appendix -- 6. Confounding: An Enigma? -- 6.1. What is the Real Problem? -- 6.2. Confounding and Extraneous Causes -- 6.3. Confounding and Statistical Control -- 6.4. Confounding and Comparability -- 6.5. Confounding and the Assignment Mechanism -- 6.6. Confounding and Model Specification -- Guidepost 6 -- 7. Confounding: Essence, Correction and Detection -- 7.1. Essence: The Nature of Confounding -- 7.2. Correction: Statistical Control for Confounding -- 7.3. Detection: Adequacy of Statistical Adjustment -- Guidepost 7 -- Appendix -- 8. Intermediate Causal Factors -- 8.1. Direct and Indirect Effects -- 8.2. Principal Stratification -- 8.3. Noncompliance -- 8.4. Attrition -- Guidepost 8 -- 9. Information Bias -- 9.1. Basic Concepts -- 9.2. Classical Measurement Model: Dichotomous Outcome -- 9.3. Causal Measurement Model: Dichotomous Outcome -- 9.4. Classical Measurement Model: Numerical Outcome -- 9.5. Causal Measurement Model: Numerical Outcome -- 9.6. Covariates Measured with Error -- Guidepost 9 -- 10. Sources of Bias -- 10.1. Sampling -- 10.2. Assignment -- 10.3. Adherence -- 10.4. Exposure Ascertainment -- 10.5. Outcome Measurement -- Guidepost 10 -- 11. Contending with Bias -- 11.1. Conventional Solutions -- 11.2. Standard Statistical Paradigm -- 11.3. Toward a Broader Perspective -- 11.4. Real-World Bias Revisited -- 11.5. Statistics and Causation
- Control code
- ocn500185781
- Dimensions
- 25 cm
- Extent
- xv, 348 p.
- Isbn
- 9780470286395
- Isbn Type
- (cloth)
- Lccn
- 2009054242
- Other physical details
- ill.
- System control number
- (OCoLC)500185781
Library Links
Embed (Experimental)
Settings
Select options that apply then copy and paste the RDF/HTML data fragment to include in your application
Embed this data in a secure (HTTPS) page:
Layout options:
Include data citation:
<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.massey.ac.nz/portal/Bias-and-causation--models-and-judgment-for/mWKKl7Ygl7w/" typeof="Book http://bibfra.me/vocab/lite/Item"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.massey.ac.nz/portal/Bias-and-causation--models-and-judgment-for/mWKKl7Ygl7w/">Bias and causation : models and judgment for valid comparisons, Herbert I. Weisberg</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.massey.ac.nz/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.massey.ac.nz/">Massey University Library, University of New Zealand</a></span></span></span></span></div>
Note: Adjust the width and height settings defined in the RDF/HTML code fragment to best match your requirements
Preview
Cite Data - Experimental
Data Citation of the Item Bias and causation : models and judgment for valid comparisons, Herbert I. Weisberg
Copy and paste the following RDF/HTML data fragment to cite this resource
<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.massey.ac.nz/portal/Bias-and-causation--models-and-judgment-for/mWKKl7Ygl7w/" typeof="Book http://bibfra.me/vocab/lite/Item"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.massey.ac.nz/portal/Bias-and-causation--models-and-judgment-for/mWKKl7Ygl7w/">Bias and causation : models and judgment for valid comparisons, Herbert I. Weisberg</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.massey.ac.nz/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.massey.ac.nz/">Massey University Library, University of New Zealand</a></span></span></span></span></div>