Coverart for item
The Resource Applied building physics : ambient conditions, building performance and material properties, Hugo Hens

Applied building physics : ambient conditions, building performance and material properties, Hugo Hens

Label
Applied building physics : ambient conditions, building performance and material properties
Title
Applied building physics
Title remainder
ambient conditions, building performance and material properties
Statement of responsibility
Hugo Hens
Creator
Author
Subject
Genre
Language
eng
Cataloging source
N$T
http://library.link/vocab/creatorName
Hens, Hugo S. L. C
Dewey number
697
Illustrations
illustrations
Index
no index present
Literary form
non fiction
Nature of contents
  • dictionaries
  • bibliography
http://library.link/vocab/subjectName
Buildings
Label
Applied building physics : ambient conditions, building performance and material properties, Hugo Hens
Instantiates
Publication
Copyright
Antecedent source
unknown
Bibliography note
Includes bibliographical references
Carrier category
online resource
Carrier category code
cr
Carrier MARC source
rdacarrier
Color
multicolored
Content category
text
Content type code
txt
Content type MARC source
rdacontent
Contents
  • 1.1.
  • Building physics related quality
  • 2.5.2.4.
  • Fire safety
  • 2.5.2.5.
  • Durability
  • 2.5.2.6.
  • Maintenance
  • Further Reading
  • 3.1.
  • Thermal comfort
  • Overview
  • 3.1.1.
  • General concepts
  • 3.1.2.
  • Physiological basis
  • 3.1.2.1.
  • Exothermic
  • 3.1.2.2.
  • Homoeothermic
  • 3.1.2.3.
  • Autonomic control system
  • 1.2.
  • 3.1.3.
  • Steady state thermal comfort, the physiology based approach
  • 3.1.3.1.
  • Clothing
  • 3.1.3.2.
  • Heat flow between body and ambient
  • 3.1.3.3.
  • Comfort equations
  • 3.1.3.4.
  • Comfort parameters and variables
  • Outdoors
  • 3.1.3.5.
  • Thermally equivalent environments and comfort temperatures
  • 3.1.3.6.
  • Comfort appreciation
  • 3.1.4.
  • Steady state thermal comfort, the adaptive model
  • 3.1.5.
  • Thermal comfort under non-uniform and under transient conditions
  • 3.1.5.1.
  • Refined body model
  • 1.2.1.
  • 3.1.5.2.
  • Local discomfort
  • 3.1.5.3.
  • Drifts and ramps
  • 3.1.6.
  • Standard-based comfort requirements
  • 3.1.7.
  • Comfort related enclosure performance
  • 3.2.
  • Health and indoor environmental quality
  • Air temperature
  • 3.2.1.
  • In general
  • 3.2.2.
  • Health
  • 3.2.3.
  • Definitions
  • 3.2.4.
  • Relation between pollution outdoor and indoors
  • 3.2.5.
  • Process-related contaminants
  • 1.2.2.
  • 3.2.5.1.
  • Dust, vapour, smoke, mist and gaseous clouds
  • 3.2.5.2.
  • Fibres
  • 3.2.5.3.
  • Ozone
  • 3.2.6.
  • Building, insulation and finishing material related contaminants
  • 3.2.6.1.
  • (Semi) volatile organic compounds ((S)VOCs)
  • Solar radiation
  • 3.2.6.2.
  • Formaldehyde (HCHO)
  • 3.2.6.3.
  • Phthalates
  • 3.2.6.4.
  • Pentachlorinephenols
  • 3.2.7.
  • Soil-related radon as contaminant
  • 3.2.8.
  • Combustion related contaminants
  • 1.2.2.1.
  • 3.2.8.1.
  • Carbon monoxide
  • 3.2.8.2.
  • Nitrous dioxide (NO2)
  • 3.2.9.
  • Bio-germs
  • 3.2.9.1.
  • Viruses
  • 3.2.9.2.
  • Bacteria
  • Beam radiation
  • 3.2.9.3.
  • Mould
  • 3.2.9.4.
  • Dust mites
  • 3.2.9.5.
  • Insects
  • 3.2.9.6.
  • Rodents
  • 3.2.9.7.
  • Pets
  • Machine generated contents note:
  • 1.2.2.2.
  • 3.2.10.
  • Human related contaminants
  • 3.2.10.1.
  • Carbon dioxide (CO2)
  • 3.2.10.2.
  • Water vapour
  • 3.2.10.3.
  • Bio-odours
  • 3.2.10.4.
  • Tobacco smoke
  • Diffuse radiation
  • 3.2.11.
  • Perceived indoor air quality
  • 3.2.11.1.
  • Odour
  • 3.2.11.2.
  • Indoor air enthalpy
  • 3.2.12.
  • Sick building syndrome (SBS)
  • 3.2.13.
  • Contaminant control
  • 1.2.2.3.
  • 3.2.13.1.
  • Minimizing emission
  • 3.2.13.2.
  • Ventilation
  • 3.2.13.3.
  • Air cleaning and personal protective measures
  • 3.3.
  • Energy efficiency
  • 3.3.1.
  • In general
  • Reflected radiation
  • 3.3.2.
  • Some statistics
  • 3.3.3.
  • End energy use in buildings
  • 3.3.3.1.
  • Lighting and appliances
  • 3.3.3.2.
  • Domestic hot water
  • 3.3.3.3.
  • Space heating, cooling and air conditioning
  • 1.2.2.4.
  • 3.3.4.
  • Space heating
  • 3.3.4.1.
  • Terminology
  • 3.3.4.2.
  • Steady state heat balance at zone level
  • 3.3.4.3.
  • Whole building steady state heat balance
  • 3.3.4.4.
  • Heat gain utilization efficiency
  • Total radiation
  • 3.3.4.5.
  • Annual end use for heating
  • 3.3.4.6.
  • Protected volume as one zone
  • 3.3.5.
  • Residential buildings, parameters shaping the annual net heating demand
  • 3.3.5.1.
  • Overview
  • 3.3.5.2.
  • Outdoor climate
  • 1.2.3.
  • 3.3.5.3.
  • Building use
  • 3.3.5.4.
  • Building design and construction
  • 3.3.6.
  • Residential buildings, parameters fixing net cooling demand
  • 3.3.7.
  • Residential buildings, gross energy demand, end energy use
  • 3.3.8.
  • Residential buildings ranked in terms of energy efficiency
  • Longwave radiation
  • 3.3.8.1.
  • Insulated
  • 3.3.8.2.
  • Energy efficient
  • 3.3.8.3.
  • Low energy
  • 3.3.8.4.
  • Passive
  • 3.3.8.5.
  • Near zero energy
  • 1.2.4.
  • 3.3.8.6.
  • Net zero energy
  • 3.3.8.7.
  • Net plus energy
  • 3.3.8.8.
  • Energy autarkic
  • 3.3.9.
  • Non-residential buildings, net and gross demand, end and primary energy use
  • 3.3.9.1.
  • In general
  • Relative humidity and (partial water) vapour pressure
  • 3.3.9.2.
  • School retrofits as an exemplary case
  • 3.4.
  • Durability
  • 3.4.1.
  • In general
  • 3.4.2.
  • Loads
  • 3.4.3.
  • Damage patterns
  • 0.1.
  • 1.2.5.
  • 3.4.3.1.
  • Decrease in thermal quality
  • 3.4.3.2.
  • Decrease in strength and stiffness
  • 3.4.3.3.
  • Stress, strain, deformation and cracking
  • 3.4.3.4.
  • Biological attack
  • 3.4.3.5.
  • Frost damage
  • Wind
  • 3.4.3.6.
  • Salt attack
  • 3.4.3.7.
  • Chemical attack
  • 3.4.3.8.
  • Corrosion
  • 3.5.
  • Economics
  • 3.5.1.
  • Total and net present value
  • 1.2.5.1.
  • 3.5.2.
  • Optimum insulation thickness
  • 3.5.3.
  • Whole building optimum
  • 3.5.3.1.
  • Methodology
  • 3.5.3.2.
  • Example
  • 3.6.
  • Sustainability
  • Wind speed
  • 3.6.1.
  • In general
  • 3.6.2.
  • Life cycle inventory and analysis
  • 3.6.2.1.
  • Definition
  • 3.6.2.2.
  • Some criteria
  • 3.6.2.3.
  • Whole energy use and minimal environmental load
  • 1.2.5.2.
  • 3.6.2.4.
  • Recycling
  • 3.6.3.
  • High performance buildings
  • Further Reading
  • 4.1.
  • Introduction
  • 4.2.
  • Airtightness
  • 4.2.1.
  • Wind pressure
  • Air flow patterns
  • 4.2.2.
  • Performance requirements
  • 4.2.2.1.
  • Air infiltration and exfiltration
  • 4.2.2.2.
  • Inside air washing, wind washing and air looping
  • 4.3.
  • Thermal transmittance
  • 4.3.1.
  • 1.2.6.
  • Definitions
  • 4.3.1.1.
  • Opaque envelope assemblies above grade
  • 4.3.1.2.
  • Whole envelope
  • 4.3.2.
  • Basis for requirements
  • 4.3.2.1.
  • Envelope parts
  • 4.3.2.2.
  • Precipitation and wind-driven rain
  • Whole envelope
  • 4.3.3.
  • Examples of requirements
  • 4.3.3.1.
  • Envelope parts
  • 4.3.3.2.
  • Whole envelopes
  • 4.4.
  • Transient thermal response
  • 4.4.1.
  • 1.2.6.1.
  • Properties of importance
  • 4.4.2.
  • Performance requirements
  • 4.4.3.
  • Consequences for the building fabric
  • 4.5.
  • Moisture tolerance
  • 4.5.1.
  • In general
  • 4.5.2.
  • Precipitation
  • Construction moisture
  • 4.5.2.1.
  • Definition
  • 4.5.2.2.
  • Performance requirements
  • 4.5.2.3.
  • Consequences for the building fabric
  • 4.5.3.
  • Rain
  • 4.5.3.1.
  • Subject of the book
  • 1.2.6.2.
  • The problem
  • 4.5.3.2.
  • Performance requirements
  • 4.5.3.3.
  • Modelling
  • 4.5.3.4.
  • Consequences for the building envelope
  • 4.5.4.
  • Rising damp
  • 4.5.4.1.
  • Wind-driven rain
  • Definition
  • 4.5.4.2.
  • Performance requirements
  • 4.5.4.3.
  • Modelling
  • 4.5.4.4.
  • Avoiding or curing rising damp
  • 4.5.5.
  • Pressure heads
  • 4.5.5.1.
  • 1.2.7.
  • Definition
  • 4.5.5.2.
  • Performance requirements
  • 4.5.5.3.
  • Modelling
  • 4.5.5.4.
  • Protecting the building fabric
  • 4.5.6.
  • Accidental leaks
  • 4.5.7.
  • Microclimates around buildings
  • Hygroscopic moisture
  • 4.5.7.1.
  • Definition
  • 4.5.7.2.
  • Performance requirements
  • 4.5.7.3.
  • Modelling
  • 4.5.7.4.
  • Consequences for the building fabric
  • 4.5.8.
  • 1.2.8.
  • Surface condensation
  • 4.5.8.1.
  • Definition
  • 4.5.8.2.
  • Performance requirements
  • 4.5.8.3.
  • Modelling
  • 4.5.8.4.
  • Consequences for the envelope
  • 4.5.9.
  • Standardized outdoor climate data
  • Interstitial condensation
  • 4.5.9.1.
  • Definition
  • 4.5.9.2.
  • Modelling
  • 4.5.9.3.
  • Performance requirements
  • 4.5.9.4.
  • Consequences for the building envelope
  • 4.5.9.5.
  • 1.2.8.1.
  • Remark
  • 4.5.10.
  • All moisture sources combined
  • 4.5.10.1.
  • Modelling
  • 4.5.10.2.
  • Performance requirements
  • 4.5.10.3.
  • Why models still have limitations
  • 4.5.10.4.
  • Design temperature
  • Three examples where full models were hardly of any help
  • 4.6.
  • Thermal bridges
  • 4.6.1.
  • Definition
  • 4.6.2.
  • Performance requirements
  • 4.6.3.
  • Consequences for the envelope
  • 4.7.
  • 1.2.8.2.
  • Contact coefficients
  • 4.8.
  • Hygrothermal stress and strain
  • 4.9.
  • Transparent parts: solar transmittance
  • 4.9.1.
  • Definition
  • 4.9.2.
  • Performance requirements
  • 4.9.3.
  • Reference years
  • Consequences for the envelope
  • Further Reading
  • 5.1.
  • In general
  • 5.2.
  • Assembly
  • 5.3.
  • Heat, air, moisture performances
  • 5.3.1.
  • Airtightness
  • 0.2.
  • 1.2.8.3.
  • 5.3.2.
  • Thermal transmittance
  • 5.3.3.
  • Transient response
  • 5.3.4.
  • Moisture tolerance
  • 5.3.4.1.
  • Construction moisture
  • 5.3.4.2.
  • Rain control
  • Very hot summer, very cold winter day
  • 5.3.4.3.
  • Rising damp
  • 5.3.4.4.
  • Hygroscopic moisture and surface condensation
  • 5.3.4.5.
  • Interstitial condensation
  • 5.3.4.6.
  • More advanced modelling
  • 5.3.4.7.
  • Thermal bridging
  • 1.2.8.4.
  • 6.1.
  • Introduction
  • 6.2.
  • Dry air and water
  • 6.3.
  • Materials, thermal properties
  • 6.3.1.
  • Definitions
  • 6.3.2.
  • Design values
  • Moisture reference years
  • 6.3.2.1.
  • Non-certified materials (ISO 10456)
  • 6.3.2.2.
  • Design values (NBN B62-002 (2001))
  • 6.3.3.
  • Measured data
  • 6.3.3.1.
  • Building materials
  • 6.3.3.2.
  • Insulation materials
  • 1.2.8.5.
  • 6.4.
  • Materials, air-related properties
  • 6.4.1.
  • Design values
  • 6.4.1.1.
  • Measured values
  • 6.5.
  • Materials, moisture properties --
  • Equivalent temperature for condensation and drying
  • 1.2.8.6.
  • Monthly mean vapour pressure outdoors
  • 1.3.
  • Indoors
  • Building physics vs. applied building physics
  • 1.3.1.
  • Air temperatures
  • 1.3.1.1.
  • In general
  • 1.3.1.2.
  • Measured data
  • 1.3.2.
  • Relative humidity and vapour pressure
  • 1.3.2.1.
  • Vapour release indoors
  • 0.3.
  • 1.3.2.2.
  • Measured data
  • 1.3.2.3.
  • Indoor climate classes
  • 1.3.3.
  • Indoor/outdoor air pressure differentials
  • Further Reading
  • 2.1.
  • Definitions
  • 2.2.
  • Units and symbols
  • Functional demands
  • 2.3.
  • Performance requirements
  • 2.4.
  • A short history
  • 2.5.
  • Performance arrays
  • 2.5.1.
  • Overview
  • 2.5.1.1.
  • Further Reading
  • The built environment
  • 2.5.1.2.
  • Whole buildings and building assemblies
  • 2.5.2.
  • In detail
  • 2.5.2.1.
  • Functionality
  • 2.5.2.2.
  • Structural adequacy
  • 2.5.2.3.
  • Measured values
  • 6.5.2.1.
  • Building materials
  • 6.5.2.2.
  • Insulation materials
  • 6.5.2.3.
  • Finishes
  • 6.5.2.4.
  • Miscellaneous
  • 6.5.2.5.
  • Contents note continued:
  • Vapour retarders
  • 6.6.
  • Surfaces, radiant properties
  • Further Reading
  • 6.5.1.
  • Design values for the vapour resistance factor (ISO 10456)
  • 6.5.1.1.
  • Building and finishing materials
  • 6.5.1.2.
  • Insulation materials
  • 6.5.2.
Control code
ocn937391964
Dimensions
unknown
Edition
Second edition
Extent
1 online resource (xvi, 342 pages)
File format
unknown
Form of item
online
Isbn
9783433607121
Level of compression
unknown
Media category
computer
Media MARC source
rdamedia
Media type code
c
Other physical details
illustrations
Quality assurance targets
not applicable
Reformatting quality
unknown
Sound
unknown sound
Specific material designation
remote
System control number
(OCoLC)937391964
Label
Applied building physics : ambient conditions, building performance and material properties, Hugo Hens
Publication
Copyright
Antecedent source
unknown
Bibliography note
Includes bibliographical references
Carrier category
online resource
Carrier category code
cr
Carrier MARC source
rdacarrier
Color
multicolored
Content category
text
Content type code
txt
Content type MARC source
rdacontent
Contents
  • 1.1.
  • Building physics related quality
  • 2.5.2.4.
  • Fire safety
  • 2.5.2.5.
  • Durability
  • 2.5.2.6.
  • Maintenance
  • Further Reading
  • 3.1.
  • Thermal comfort
  • Overview
  • 3.1.1.
  • General concepts
  • 3.1.2.
  • Physiological basis
  • 3.1.2.1.
  • Exothermic
  • 3.1.2.2.
  • Homoeothermic
  • 3.1.2.3.
  • Autonomic control system
  • 1.2.
  • 3.1.3.
  • Steady state thermal comfort, the physiology based approach
  • 3.1.3.1.
  • Clothing
  • 3.1.3.2.
  • Heat flow between body and ambient
  • 3.1.3.3.
  • Comfort equations
  • 3.1.3.4.
  • Comfort parameters and variables
  • Outdoors
  • 3.1.3.5.
  • Thermally equivalent environments and comfort temperatures
  • 3.1.3.6.
  • Comfort appreciation
  • 3.1.4.
  • Steady state thermal comfort, the adaptive model
  • 3.1.5.
  • Thermal comfort under non-uniform and under transient conditions
  • 3.1.5.1.
  • Refined body model
  • 1.2.1.
  • 3.1.5.2.
  • Local discomfort
  • 3.1.5.3.
  • Drifts and ramps
  • 3.1.6.
  • Standard-based comfort requirements
  • 3.1.7.
  • Comfort related enclosure performance
  • 3.2.
  • Health and indoor environmental quality
  • Air temperature
  • 3.2.1.
  • In general
  • 3.2.2.
  • Health
  • 3.2.3.
  • Definitions
  • 3.2.4.
  • Relation between pollution outdoor and indoors
  • 3.2.5.
  • Process-related contaminants
  • 1.2.2.
  • 3.2.5.1.
  • Dust, vapour, smoke, mist and gaseous clouds
  • 3.2.5.2.
  • Fibres
  • 3.2.5.3.
  • Ozone
  • 3.2.6.
  • Building, insulation and finishing material related contaminants
  • 3.2.6.1.
  • (Semi) volatile organic compounds ((S)VOCs)
  • Solar radiation
  • 3.2.6.2.
  • Formaldehyde (HCHO)
  • 3.2.6.3.
  • Phthalates
  • 3.2.6.4.
  • Pentachlorinephenols
  • 3.2.7.
  • Soil-related radon as contaminant
  • 3.2.8.
  • Combustion related contaminants
  • 1.2.2.1.
  • 3.2.8.1.
  • Carbon monoxide
  • 3.2.8.2.
  • Nitrous dioxide (NO2)
  • 3.2.9.
  • Bio-germs
  • 3.2.9.1.
  • Viruses
  • 3.2.9.2.
  • Bacteria
  • Beam radiation
  • 3.2.9.3.
  • Mould
  • 3.2.9.4.
  • Dust mites
  • 3.2.9.5.
  • Insects
  • 3.2.9.6.
  • Rodents
  • 3.2.9.7.
  • Pets
  • Machine generated contents note:
  • 1.2.2.2.
  • 3.2.10.
  • Human related contaminants
  • 3.2.10.1.
  • Carbon dioxide (CO2)
  • 3.2.10.2.
  • Water vapour
  • 3.2.10.3.
  • Bio-odours
  • 3.2.10.4.
  • Tobacco smoke
  • Diffuse radiation
  • 3.2.11.
  • Perceived indoor air quality
  • 3.2.11.1.
  • Odour
  • 3.2.11.2.
  • Indoor air enthalpy
  • 3.2.12.
  • Sick building syndrome (SBS)
  • 3.2.13.
  • Contaminant control
  • 1.2.2.3.
  • 3.2.13.1.
  • Minimizing emission
  • 3.2.13.2.
  • Ventilation
  • 3.2.13.3.
  • Air cleaning and personal protective measures
  • 3.3.
  • Energy efficiency
  • 3.3.1.
  • In general
  • Reflected radiation
  • 3.3.2.
  • Some statistics
  • 3.3.3.
  • End energy use in buildings
  • 3.3.3.1.
  • Lighting and appliances
  • 3.3.3.2.
  • Domestic hot water
  • 3.3.3.3.
  • Space heating, cooling and air conditioning
  • 1.2.2.4.
  • 3.3.4.
  • Space heating
  • 3.3.4.1.
  • Terminology
  • 3.3.4.2.
  • Steady state heat balance at zone level
  • 3.3.4.3.
  • Whole building steady state heat balance
  • 3.3.4.4.
  • Heat gain utilization efficiency
  • Total radiation
  • 3.3.4.5.
  • Annual end use for heating
  • 3.3.4.6.
  • Protected volume as one zone
  • 3.3.5.
  • Residential buildings, parameters shaping the annual net heating demand
  • 3.3.5.1.
  • Overview
  • 3.3.5.2.
  • Outdoor climate
  • 1.2.3.
  • 3.3.5.3.
  • Building use
  • 3.3.5.4.
  • Building design and construction
  • 3.3.6.
  • Residential buildings, parameters fixing net cooling demand
  • 3.3.7.
  • Residential buildings, gross energy demand, end energy use
  • 3.3.8.
  • Residential buildings ranked in terms of energy efficiency
  • Longwave radiation
  • 3.3.8.1.
  • Insulated
  • 3.3.8.2.
  • Energy efficient
  • 3.3.8.3.
  • Low energy
  • 3.3.8.4.
  • Passive
  • 3.3.8.5.
  • Near zero energy
  • 1.2.4.
  • 3.3.8.6.
  • Net zero energy
  • 3.3.8.7.
  • Net plus energy
  • 3.3.8.8.
  • Energy autarkic
  • 3.3.9.
  • Non-residential buildings, net and gross demand, end and primary energy use
  • 3.3.9.1.
  • In general
  • Relative humidity and (partial water) vapour pressure
  • 3.3.9.2.
  • School retrofits as an exemplary case
  • 3.4.
  • Durability
  • 3.4.1.
  • In general
  • 3.4.2.
  • Loads
  • 3.4.3.
  • Damage patterns
  • 0.1.
  • 1.2.5.
  • 3.4.3.1.
  • Decrease in thermal quality
  • 3.4.3.2.
  • Decrease in strength and stiffness
  • 3.4.3.3.
  • Stress, strain, deformation and cracking
  • 3.4.3.4.
  • Biological attack
  • 3.4.3.5.
  • Frost damage
  • Wind
  • 3.4.3.6.
  • Salt attack
  • 3.4.3.7.
  • Chemical attack
  • 3.4.3.8.
  • Corrosion
  • 3.5.
  • Economics
  • 3.5.1.
  • Total and net present value
  • 1.2.5.1.
  • 3.5.2.
  • Optimum insulation thickness
  • 3.5.3.
  • Whole building optimum
  • 3.5.3.1.
  • Methodology
  • 3.5.3.2.
  • Example
  • 3.6.
  • Sustainability
  • Wind speed
  • 3.6.1.
  • In general
  • 3.6.2.
  • Life cycle inventory and analysis
  • 3.6.2.1.
  • Definition
  • 3.6.2.2.
  • Some criteria
  • 3.6.2.3.
  • Whole energy use and minimal environmental load
  • 1.2.5.2.
  • 3.6.2.4.
  • Recycling
  • 3.6.3.
  • High performance buildings
  • Further Reading
  • 4.1.
  • Introduction
  • 4.2.
  • Airtightness
  • 4.2.1.
  • Wind pressure
  • Air flow patterns
  • 4.2.2.
  • Performance requirements
  • 4.2.2.1.
  • Air infiltration and exfiltration
  • 4.2.2.2.
  • Inside air washing, wind washing and air looping
  • 4.3.
  • Thermal transmittance
  • 4.3.1.
  • 1.2.6.
  • Definitions
  • 4.3.1.1.
  • Opaque envelope assemblies above grade
  • 4.3.1.2.
  • Whole envelope
  • 4.3.2.
  • Basis for requirements
  • 4.3.2.1.
  • Envelope parts
  • 4.3.2.2.
  • Precipitation and wind-driven rain
  • Whole envelope
  • 4.3.3.
  • Examples of requirements
  • 4.3.3.1.
  • Envelope parts
  • 4.3.3.2.
  • Whole envelopes
  • 4.4.
  • Transient thermal response
  • 4.4.1.
  • 1.2.6.1.
  • Properties of importance
  • 4.4.2.
  • Performance requirements
  • 4.4.3.
  • Consequences for the building fabric
  • 4.5.
  • Moisture tolerance
  • 4.5.1.
  • In general
  • 4.5.2.
  • Precipitation
  • Construction moisture
  • 4.5.2.1.
  • Definition
  • 4.5.2.2.
  • Performance requirements
  • 4.5.2.3.
  • Consequences for the building fabric
  • 4.5.3.
  • Rain
  • 4.5.3.1.
  • Subject of the book
  • 1.2.6.2.
  • The problem
  • 4.5.3.2.
  • Performance requirements
  • 4.5.3.3.
  • Modelling
  • 4.5.3.4.
  • Consequences for the building envelope
  • 4.5.4.
  • Rising damp
  • 4.5.4.1.
  • Wind-driven rain
  • Definition
  • 4.5.4.2.
  • Performance requirements
  • 4.5.4.3.
  • Modelling
  • 4.5.4.4.
  • Avoiding or curing rising damp
  • 4.5.5.
  • Pressure heads
  • 4.5.5.1.
  • 1.2.7.
  • Definition
  • 4.5.5.2.
  • Performance requirements
  • 4.5.5.3.
  • Modelling
  • 4.5.5.4.
  • Protecting the building fabric
  • 4.5.6.
  • Accidental leaks
  • 4.5.7.
  • Microclimates around buildings
  • Hygroscopic moisture
  • 4.5.7.1.
  • Definition
  • 4.5.7.2.
  • Performance requirements
  • 4.5.7.3.
  • Modelling
  • 4.5.7.4.
  • Consequences for the building fabric
  • 4.5.8.
  • 1.2.8.
  • Surface condensation
  • 4.5.8.1.
  • Definition
  • 4.5.8.2.
  • Performance requirements
  • 4.5.8.3.
  • Modelling
  • 4.5.8.4.
  • Consequences for the envelope
  • 4.5.9.
  • Standardized outdoor climate data
  • Interstitial condensation
  • 4.5.9.1.
  • Definition
  • 4.5.9.2.
  • Modelling
  • 4.5.9.3.
  • Performance requirements
  • 4.5.9.4.
  • Consequences for the building envelope
  • 4.5.9.5.
  • 1.2.8.1.
  • Remark
  • 4.5.10.
  • All moisture sources combined
  • 4.5.10.1.
  • Modelling
  • 4.5.10.2.
  • Performance requirements
  • 4.5.10.3.
  • Why models still have limitations
  • 4.5.10.4.
  • Design temperature
  • Three examples where full models were hardly of any help
  • 4.6.
  • Thermal bridges
  • 4.6.1.
  • Definition
  • 4.6.2.
  • Performance requirements
  • 4.6.3.
  • Consequences for the envelope
  • 4.7.
  • 1.2.8.2.
  • Contact coefficients
  • 4.8.
  • Hygrothermal stress and strain
  • 4.9.
  • Transparent parts: solar transmittance
  • 4.9.1.
  • Definition
  • 4.9.2.
  • Performance requirements
  • 4.9.3.
  • Reference years
  • Consequences for the envelope
  • Further Reading
  • 5.1.
  • In general
  • 5.2.
  • Assembly
  • 5.3.
  • Heat, air, moisture performances
  • 5.3.1.
  • Airtightness
  • 0.2.
  • 1.2.8.3.
  • 5.3.2.
  • Thermal transmittance
  • 5.3.3.
  • Transient response
  • 5.3.4.
  • Moisture tolerance
  • 5.3.4.1.
  • Construction moisture
  • 5.3.4.2.
  • Rain control
  • Very hot summer, very cold winter day
  • 5.3.4.3.
  • Rising damp
  • 5.3.4.4.
  • Hygroscopic moisture and surface condensation
  • 5.3.4.5.
  • Interstitial condensation
  • 5.3.4.6.
  • More advanced modelling
  • 5.3.4.7.
  • Thermal bridging
  • 1.2.8.4.
  • 6.1.
  • Introduction
  • 6.2.
  • Dry air and water
  • 6.3.
  • Materials, thermal properties
  • 6.3.1.
  • Definitions
  • 6.3.2.
  • Design values
  • Moisture reference years
  • 6.3.2.1.
  • Non-certified materials (ISO 10456)
  • 6.3.2.2.
  • Design values (NBN B62-002 (2001))
  • 6.3.3.
  • Measured data
  • 6.3.3.1.
  • Building materials
  • 6.3.3.2.
  • Insulation materials
  • 1.2.8.5.
  • 6.4.
  • Materials, air-related properties
  • 6.4.1.
  • Design values
  • 6.4.1.1.
  • Measured values
  • 6.5.
  • Materials, moisture properties --
  • Equivalent temperature for condensation and drying
  • 1.2.8.6.
  • Monthly mean vapour pressure outdoors
  • 1.3.
  • Indoors
  • Building physics vs. applied building physics
  • 1.3.1.
  • Air temperatures
  • 1.3.1.1.
  • In general
  • 1.3.1.2.
  • Measured data
  • 1.3.2.
  • Relative humidity and vapour pressure
  • 1.3.2.1.
  • Vapour release indoors
  • 0.3.
  • 1.3.2.2.
  • Measured data
  • 1.3.2.3.
  • Indoor climate classes
  • 1.3.3.
  • Indoor/outdoor air pressure differentials
  • Further Reading
  • 2.1.
  • Definitions
  • 2.2.
  • Units and symbols
  • Functional demands
  • 2.3.
  • Performance requirements
  • 2.4.
  • A short history
  • 2.5.
  • Performance arrays
  • 2.5.1.
  • Overview
  • 2.5.1.1.
  • Further Reading
  • The built environment
  • 2.5.1.2.
  • Whole buildings and building assemblies
  • 2.5.2.
  • In detail
  • 2.5.2.1.
  • Functionality
  • 2.5.2.2.
  • Structural adequacy
  • 2.5.2.3.
  • Measured values
  • 6.5.2.1.
  • Building materials
  • 6.5.2.2.
  • Insulation materials
  • 6.5.2.3.
  • Finishes
  • 6.5.2.4.
  • Miscellaneous
  • 6.5.2.5.
  • Contents note continued:
  • Vapour retarders
  • 6.6.
  • Surfaces, radiant properties
  • Further Reading
  • 6.5.1.
  • Design values for the vapour resistance factor (ISO 10456)
  • 6.5.1.1.
  • Building and finishing materials
  • 6.5.1.2.
  • Insulation materials
  • 6.5.2.
Control code
ocn937391964
Dimensions
unknown
Edition
Second edition
Extent
1 online resource (xvi, 342 pages)
File format
unknown
Form of item
online
Isbn
9783433607121
Level of compression
unknown
Media category
computer
Media MARC source
rdamedia
Media type code
c
Other physical details
illustrations
Quality assurance targets
not applicable
Reformatting quality
unknown
Sound
unknown sound
Specific material designation
remote
System control number
(OCoLC)937391964

Library Locations

    • InternetBorrow it
      Albany, Auckland, 0632, NZ
Processing Feedback ...