Coverart for item
The Resource Algorithms for image processing and computer vision, J.R. Parker

Algorithms for image processing and computer vision, J.R. Parker

Label
Algorithms for image processing and computer vision
Title
Algorithms for image processing and computer vision
Statement of responsibility
J.R. Parker
Creator
Subject
Language
eng
Cataloging source
UKM
http://library.link/vocab/creatorDate
1955-
http://library.link/vocab/creatorName
Parker, J. R.
Illustrations
illustrations
Index
index present
Literary form
non fiction
Nature of contents
bibliography
http://library.link/vocab/subjectName
  • Image processing
  • Computer vision
  • Computer algorithms
Label
Algorithms for image processing and computer vision, J.R. Parker
Instantiates
Publication
Note
Previous ed.: 1997
Bibliography note
Includes bibliographical references and index
Contents
OpenCV -- The Basic OpenCV Code -- The IplImage Data Structure -- Reading and Writing Images -- Image Display -- An Example -- Image Capture -- Interfacing with the AIPCV Library -- Website Files -- References -- The Purpose of Edge Detection -- Traditional Approaches and Theory -- Models of Edges -- Noise -- Derivative Operators -- Template-Based Edge Detection -- Edge Models: The Marr-Hildreth Edge Detector -- The Canny Edge Detector -- The Shen-Castan (ISEF) Edge Detector -- A Comparison of Two Optimal Edge Detectors -- Color Edges -- Source Code for the Marr-Hildreth Edge Detector -- Source Code for the Canny Edge Detector -- Source Code for the Shen-Castan Edge Detector -- Website Files -- References -- Morphology Defined -- Connectedness -- Elements of Digital Morphology [—] Binary Operations -- Binary Dilation -- Implementing Binary Dilation -- Binary Erosion -- Implementation of Binary Erosion -- Opening and Closing -- MAX [—] A High-Level Programming Language for Morphology -- The "Hit-and-Miss" Transform -- Identifying Region Boundaries -- Conditional Dilation -- Counting Regions -- Grey-Level Morphology -- Opening and Closing -- Smoothing -- Gradient -- Segmentation of Textures -- Size Distribution of Objects -- Color Morphology -- Website Files -- References -- Basics of Grey-Level Segmentation -- Using Edge Pixels -- Iterative Selection -- The Method of Grey-Level Histograms -- Using Entropy -- Fuzzy Sets -- Minimum Error Thresholding -- Sample Results From Single Threshold Selection -- The Use of Regional Thresholds -- Chow and Kaneko -- Modeling Illumination Using Edges -- Implementation and Results -- Comparisons -- Relaxation Methods -- Moving Averages -- Cluster-Based Thresholds -- Multiple Thresholds -- Website Files -- References -- Texture and Segmentation -- A Simple Analysis of Texture in Grey-Level Images -- Grey-Level Co-Occurrence -- Maximum Probability -- Moments -- Contrast -- Homogeneity -- Entropy -- Results from the GLCM Descriptors -- Speeding Up the Texture Operators -- Edges and Texture -- Energy and Texture -- Surfaces and Texture -- Vector Dispersion -- Surface Curvature -- Fractal Dimension -- Color Segmentation -- Color Textures -- Website Files -- References -- What Is a Skeleton? -- The Medial Axis Transform -- Iterative Morphological Methods -- The Use of Contours -- Choi/Lam/Siu Algorithm -- Treating the Object as a Polygon -- Triangulation Methods -- Force-Based Thinning -- Definitions -- Use of a Force Field -- Subpixel Skeletons -- Source Code for Zhang-Suen/Stentiford/Holt Combined Algorithm -- Website Files -- References -- Image Degradations [—] The Real World -- The Frequency Domain -- The Fourier Transform -- The Fast Fourier Transform -- The Inverse Fourier Transform -- Two-Dimensional Fourier Transforms -- Fourier Transforms in OpenCV -- Creating Artificial Blur -- The Inverse Filter -- The Wiener Filter -- Structured Noise -- Motion Blur [—] A Special Case -- The Homomorphic Filter [—] illumination -- Frequency Filters in General -- Isolating Illumination Effects -- Website Files -- References -- Objects, Patterns, and Statistics -- Features and Regions -- Training and Testing -- Variation: In-Class and Out-Class -- Minimum Distance Classifiers -- Distance Metrics -- Distances Between Features -- Cross Validation -- Support Vector Machines -- Multiple Classifiers [—] Ensembles -- Merging Multiple Methods -- Merging Type 1 Responses -- Evaluation -- Converting Between Response Types -- Merging Type 2 Responses -- Merging Type 3 Responses -- Bagging and Boosting -- Bagging -- Boosting -- Website Files -- References -- The Problem -- OCR on Simple Perfect Images -- OCR on Scanned Images [—] Segmentation -- Noise -- Isolating Individual Glyphs -- Matching Templates -- Statistical Recognition -- OCR on Fax Images [—] Printed Characters -- Orientation [—] Skew Detection -- The Use of Edges -- Handprinted Characters -- Properties of the Character Outline -- Convex Deficiencies -- Vector Templates -- Neural Nets -- A Simple Neural Net -- A Backpropagation Net for Digit Recognition -- The Use of Multiple Classifiers -- Merging Multiple Methods -- Results From the Multiple Classifier -- Printed Music Recognition [—] A Study -- Staff Lines -- Segmentation -- Music Symbol Recognition -- Source Code for Neural Net Recognition System -- Website Files -- References -- Searching Images -- Maintaining Collections of Images -- Features for Query by Example -- Color Image Features -- Mean Color -- Color Quad Tree -- Hue and Intensity Histograms -- Comparing Histograms -- Requantization -- Results from Simple Color Features -- Other Color-Based Methods -- Grey-Level Image Features -- Grey Histograms -- Grey Sigma [—] Moments -- Edge Density [—] Boundaries Between Objects -- Edge Direction -- Boolean Edge Density -- Spatial Considerations -- Overall Regions -- Rectangular Regions -- Angular Regions -- Circular Regions -- Hybrid Regions -- Test of Spatial Sampling -- Additional Considerations -- Texture -- Objects, Contours, Boundaries -- Data Sets -- Website Files -- References -- Systems -- Paradigms for Multiple-Processor Computation -- Shared Memory -- Message Passing -- Execution Timing -- Using clock() -- Using QueryPerformanceCounter -- The Message-Passing Interface System -- Installing MPI -- Using MPI -- Inter-Process Communication -- Running MPI Programs -- Real Image Computations -- Using a Computer Network [—] Cluster Computing -- A Shared Memory System [—] Using the PC Graphics Processor -- GLSL -- OpenGL Fundamentals -- Practical Textures in OpenGL -- Shader Programming Basics -- Vertex and Fragment Shaders -- Required GLSL Initializations -- Reading and Converting the Image -- Passing Parameters to Shader Programs -- Putting It All Together -- Speedup Using the GPU -- Developing and Testing Shader Code -- Finding the Needed Software -- Website Files -- References
Control code
ocn656770590
Dimensions
23 cm
Edition
2nd ed
Extent
xxiv, 480 p.
Isbn
9780470643853
Isbn Type
(pbk.)
Lccn
2010939957
Other physical details
ill.
System control number
(OCoLC)656770590
Label
Algorithms for image processing and computer vision, J.R. Parker
Publication
Note
Previous ed.: 1997
Bibliography note
Includes bibliographical references and index
Contents
OpenCV -- The Basic OpenCV Code -- The IplImage Data Structure -- Reading and Writing Images -- Image Display -- An Example -- Image Capture -- Interfacing with the AIPCV Library -- Website Files -- References -- The Purpose of Edge Detection -- Traditional Approaches and Theory -- Models of Edges -- Noise -- Derivative Operators -- Template-Based Edge Detection -- Edge Models: The Marr-Hildreth Edge Detector -- The Canny Edge Detector -- The Shen-Castan (ISEF) Edge Detector -- A Comparison of Two Optimal Edge Detectors -- Color Edges -- Source Code for the Marr-Hildreth Edge Detector -- Source Code for the Canny Edge Detector -- Source Code for the Shen-Castan Edge Detector -- Website Files -- References -- Morphology Defined -- Connectedness -- Elements of Digital Morphology [—] Binary Operations -- Binary Dilation -- Implementing Binary Dilation -- Binary Erosion -- Implementation of Binary Erosion -- Opening and Closing -- MAX [—] A High-Level Programming Language for Morphology -- The "Hit-and-Miss" Transform -- Identifying Region Boundaries -- Conditional Dilation -- Counting Regions -- Grey-Level Morphology -- Opening and Closing -- Smoothing -- Gradient -- Segmentation of Textures -- Size Distribution of Objects -- Color Morphology -- Website Files -- References -- Basics of Grey-Level Segmentation -- Using Edge Pixels -- Iterative Selection -- The Method of Grey-Level Histograms -- Using Entropy -- Fuzzy Sets -- Minimum Error Thresholding -- Sample Results From Single Threshold Selection -- The Use of Regional Thresholds -- Chow and Kaneko -- Modeling Illumination Using Edges -- Implementation and Results -- Comparisons -- Relaxation Methods -- Moving Averages -- Cluster-Based Thresholds -- Multiple Thresholds -- Website Files -- References -- Texture and Segmentation -- A Simple Analysis of Texture in Grey-Level Images -- Grey-Level Co-Occurrence -- Maximum Probability -- Moments -- Contrast -- Homogeneity -- Entropy -- Results from the GLCM Descriptors -- Speeding Up the Texture Operators -- Edges and Texture -- Energy and Texture -- Surfaces and Texture -- Vector Dispersion -- Surface Curvature -- Fractal Dimension -- Color Segmentation -- Color Textures -- Website Files -- References -- What Is a Skeleton? -- The Medial Axis Transform -- Iterative Morphological Methods -- The Use of Contours -- Choi/Lam/Siu Algorithm -- Treating the Object as a Polygon -- Triangulation Methods -- Force-Based Thinning -- Definitions -- Use of a Force Field -- Subpixel Skeletons -- Source Code for Zhang-Suen/Stentiford/Holt Combined Algorithm -- Website Files -- References -- Image Degradations [—] The Real World -- The Frequency Domain -- The Fourier Transform -- The Fast Fourier Transform -- The Inverse Fourier Transform -- Two-Dimensional Fourier Transforms -- Fourier Transforms in OpenCV -- Creating Artificial Blur -- The Inverse Filter -- The Wiener Filter -- Structured Noise -- Motion Blur [—] A Special Case -- The Homomorphic Filter [—] illumination -- Frequency Filters in General -- Isolating Illumination Effects -- Website Files -- References -- Objects, Patterns, and Statistics -- Features and Regions -- Training and Testing -- Variation: In-Class and Out-Class -- Minimum Distance Classifiers -- Distance Metrics -- Distances Between Features -- Cross Validation -- Support Vector Machines -- Multiple Classifiers [—] Ensembles -- Merging Multiple Methods -- Merging Type 1 Responses -- Evaluation -- Converting Between Response Types -- Merging Type 2 Responses -- Merging Type 3 Responses -- Bagging and Boosting -- Bagging -- Boosting -- Website Files -- References -- The Problem -- OCR on Simple Perfect Images -- OCR on Scanned Images [—] Segmentation -- Noise -- Isolating Individual Glyphs -- Matching Templates -- Statistical Recognition -- OCR on Fax Images [—] Printed Characters -- Orientation [—] Skew Detection -- The Use of Edges -- Handprinted Characters -- Properties of the Character Outline -- Convex Deficiencies -- Vector Templates -- Neural Nets -- A Simple Neural Net -- A Backpropagation Net for Digit Recognition -- The Use of Multiple Classifiers -- Merging Multiple Methods -- Results From the Multiple Classifier -- Printed Music Recognition [—] A Study -- Staff Lines -- Segmentation -- Music Symbol Recognition -- Source Code for Neural Net Recognition System -- Website Files -- References -- Searching Images -- Maintaining Collections of Images -- Features for Query by Example -- Color Image Features -- Mean Color -- Color Quad Tree -- Hue and Intensity Histograms -- Comparing Histograms -- Requantization -- Results from Simple Color Features -- Other Color-Based Methods -- Grey-Level Image Features -- Grey Histograms -- Grey Sigma [—] Moments -- Edge Density [—] Boundaries Between Objects -- Edge Direction -- Boolean Edge Density -- Spatial Considerations -- Overall Regions -- Rectangular Regions -- Angular Regions -- Circular Regions -- Hybrid Regions -- Test of Spatial Sampling -- Additional Considerations -- Texture -- Objects, Contours, Boundaries -- Data Sets -- Website Files -- References -- Systems -- Paradigms for Multiple-Processor Computation -- Shared Memory -- Message Passing -- Execution Timing -- Using clock() -- Using QueryPerformanceCounter -- The Message-Passing Interface System -- Installing MPI -- Using MPI -- Inter-Process Communication -- Running MPI Programs -- Real Image Computations -- Using a Computer Network [—] Cluster Computing -- A Shared Memory System [—] Using the PC Graphics Processor -- GLSL -- OpenGL Fundamentals -- Practical Textures in OpenGL -- Shader Programming Basics -- Vertex and Fragment Shaders -- Required GLSL Initializations -- Reading and Converting the Image -- Passing Parameters to Shader Programs -- Putting It All Together -- Speedup Using the GPU -- Developing and Testing Shader Code -- Finding the Needed Software -- Website Files -- References
Control code
ocn656770590
Dimensions
23 cm
Edition
2nd ed
Extent
xxiv, 480 p.
Isbn
9780470643853
Isbn Type
(pbk.)
Lccn
2010939957
Other physical details
ill.
System control number
(OCoLC)656770590

Library Locations

    • Albany LibraryBorrow it
      Gate 1, East Precinct, Albany Expressway (SH17), Albany, Auckland, 0632, NZ
      -36.733330 174.700641
    • ManawatÅ« LibraryBorrow it
      Tennent Drive, Palmerston North, Palmerston North, 4472, NZ
      -40.385340 175.617349
Processing Feedback ...