Coverart for item
The Resource A new approach to sediment transport in the design and operation of irrigation canals, Herman Depeweg, Néstor Méndez V

A new approach to sediment transport in the design and operation of irrigation canals, Herman Depeweg, Néstor Méndez V

Label
A new approach to sediment transport in the design and operation of irrigation canals
Title
A new approach to sediment transport in the design and operation of irrigation canals
Statement of responsibility
Herman Depeweg, Néstor Méndez V
Creator
Contributor
Subject
Language
eng
Additional physical form
Also available in print edition.
http://library.link/vocab/creatorName
Depeweg, Herman
Illustrations
illustrations
Index
index present
Literary form
non fiction
Nature of contents
  • dictionaries
  • bibliography
http://library.link/vocab/relatedWorkOrContributorDate
1954-
http://library.link/vocab/relatedWorkOrContributorName
Méndez V., Néstor J.
Series statement
UNESCO-IHE lecture note series
http://library.link/vocab/subjectName
  • Sediment transport
  • Irrigation canals and flumes
Label
A new approach to sediment transport in the design and operation of irrigation canals, Herman Depeweg, Néstor Méndez V
Instantiates
Publication
Antecedent source
unknown
Bibliography note
Includes bibliographical references and index
Color
multicolored
Contents
<P>Table of Contents</P><P>LIST OF FIGURES<BR>LIST OF TABLES</P><P>1. INTRODUCTION</P><P>2. OPEN CHANNEL FLOW<BR>2.1 Introduction<BR>2.2 Flow types and characteristics<BR>2.3 Geometry<BR>2.4 Basic hydraulic principles<BR>2.5 Velocity distribution<BR>2.6 Uniform flow<BR>2.7 Non-uniform steady flow<BR>2.8 Some general aspects of unsteady flow<BR>2.9 Basic differential equations for gradually varied unsteady flow<BR>2.10 Solution of the de St. Venant equations<BR>2.11 Rectangular channels and the method of characteristics</P><P>3. SEDIMENT PROPERTIES<BR>3.1 Introduction<BR>3.2 Density and porosity<BR>3.3 Size and size distribution<BR>3.4 Shape<BR>3.5 Fall velocity<BR>3.6 Characteristic dimensionless parameters </P><P>4. DESIGN CRITERIA FOR IRRIGATION CANALS<BR>4.1 Introduction<BR>4.2 The role of sediment transport in the design of irrigation canals<BR>4.2.1 Regime method<BR>4.2.2 Tractive force method<BR>4.2.3 Permissible velocity method<BR>4.2.4 Rational method<BR>4.3 Final comments</P><P>5. SEDIMENT TRANSPORT CONCEPTS<BR>5.1 Introduction<BR>5.2 Friction factor predictors<BR>5.2.1 Bed form development<BR>5.2.2 Effect of bed forms on the flow resistance<BR>5.2.3 Determination of the friction factor<BR>5.2.4 Composite roughness for non-wide irrigation canals<BR>5.2.5 A recommended method for the prediction of composite roughness in trapezoidal canals<BR>5.2.6 Comparison of the composite roughness predictors in trapezoidal canal<BR>5.2.7 Prediction of composite roughness in a rectangular canal<BR>5.3 Governing equations for sediment transport<BR>5.3.1 Sediment transport capacity<BR>5.3.2 Comparison of sediment transport capacity<BR>5.3.3 Sediment transport computation in non-wide canals<BR>5.3.4 Comparison of the procedures for computing the total sediment transport<BR>5.3.5 Sediment transport in non-equilibrium conditions<BR>5.4 Morphological changes of the bottom level<BR>5.5 Conclusions</P><P>6. SETRIC, A MATHEMATICAL MODEL FOR SEDIMENT TRANSPORT IN IRRIGATION CANALS 120<BR>6.1 Introduction<BR>6.2 Water flow equations<BR>6.3 Sediment transport equations<BR>6.4 General description of the mathematical model<BR>6.5 Input and output data<BR>6.6 Conclusions</P><P>7. THE SEDIMENT TRANSPORT MODEL AND ITS APPLICATIONS<BR>7.1 Introduction<BR>7.2 Case 1 -- Changes in the discharges<BR>7.3 Case 2 -- Changes in the incoming sediment load<BR>7.4 Case 3 -- Controlled sediment deposition<BR>7.5 Case 4 -- Flow control structures<BR>7.6 Conclusions</P><P>REFERENCES</P><P>LIST OF SYMBOLS</P><P>APPENDIX A: METHODS TO ESTIMATE THE TOTAL SEDIMENT TRANSPORT CAPACITY IN IRRIGATION CANALS<BR>A.1 Introduction<BR>A.2 Ackers and White method<BR>A.3 Brownlie method<BR>A.4 Engelund and Hansen method<BR>A.5 Van Rijn method<BR>A.5.1 The suspended load transport<BR>A.6 Yang method</P><P>APPENDIX B: METHODS TO PREDICT THE FRICTION FACTOR<BR>B.1 Van Rijn<BR>B.2 Brownlie<BR>B.3 White, Paris and Bettess<BR>B.4 Engelund</P><P>APPENDIX C: HYDRAULIC DESIGN OF IRRIGATION CANALS<BR>C.1 Introduction<BR>C.2 Alignment of an irrigation canal<BR>C.3 Water levels<BR>C.4 Earthwork<BR>C.5 Design of irrigation canals<BR>C.6 Boundary shear stresses<BR>C.7 Sediment transport criteria<BR>C.8 Transport of the bed material<BR>C.9 Final remarks<BR>C.10 Computer aided design of canals</P><P>APPENDIX D: DESCRIPTION OF THE MAIN ASPECTS OF THE REGIME THEORY<BR>D.1 Some regime considerations<BR>D.1.1 Sediments<BR>D.1.2 Maturing of canals<BR>D.1.3 Slope adjustments<BR>D.1.4 Diversion of the sediment<BR>D.1.5 Maintenance aspects<BR>D.1.6 Flow capacity<BR>D.1.7 Design considerations</P><P>APPENDIX E: GLOSSARY</P><P>INDEX</P><P> </P>
Control code
ocn156928901
Dimensions
unknown
Extent
1 online resource (x, 227 pages)
File format
unknown
Form of item
online
Isbn
9781280858543
Lccn
2006034650
Level of compression
unknown
Note
Taylor & Francis
Other physical details
illustrations
Quality assurance targets
not applicable
Reformatting quality
unknown
Reproduction note
Electronic reproduction.
Sound
unknown sound
Specific material designation
remote
System control number
(OCoLC)156928901
System details
Master and use copy. Digital master created according to Benchmark for Faithful Digital Reproductions of Monographs and Serials, Version 1. Digital Library Federation, December 2002.
Label
A new approach to sediment transport in the design and operation of irrigation canals, Herman Depeweg, Néstor Méndez V
Publication
Antecedent source
unknown
Bibliography note
Includes bibliographical references and index
Color
multicolored
Contents
<P>Table of Contents</P><P>LIST OF FIGURES<BR>LIST OF TABLES</P><P>1. INTRODUCTION</P><P>2. OPEN CHANNEL FLOW<BR>2.1 Introduction<BR>2.2 Flow types and characteristics<BR>2.3 Geometry<BR>2.4 Basic hydraulic principles<BR>2.5 Velocity distribution<BR>2.6 Uniform flow<BR>2.7 Non-uniform steady flow<BR>2.8 Some general aspects of unsteady flow<BR>2.9 Basic differential equations for gradually varied unsteady flow<BR>2.10 Solution of the de St. Venant equations<BR>2.11 Rectangular channels and the method of characteristics</P><P>3. SEDIMENT PROPERTIES<BR>3.1 Introduction<BR>3.2 Density and porosity<BR>3.3 Size and size distribution<BR>3.4 Shape<BR>3.5 Fall velocity<BR>3.6 Characteristic dimensionless parameters </P><P>4. DESIGN CRITERIA FOR IRRIGATION CANALS<BR>4.1 Introduction<BR>4.2 The role of sediment transport in the design of irrigation canals<BR>4.2.1 Regime method<BR>4.2.2 Tractive force method<BR>4.2.3 Permissible velocity method<BR>4.2.4 Rational method<BR>4.3 Final comments</P><P>5. SEDIMENT TRANSPORT CONCEPTS<BR>5.1 Introduction<BR>5.2 Friction factor predictors<BR>5.2.1 Bed form development<BR>5.2.2 Effect of bed forms on the flow resistance<BR>5.2.3 Determination of the friction factor<BR>5.2.4 Composite roughness for non-wide irrigation canals<BR>5.2.5 A recommended method for the prediction of composite roughness in trapezoidal canals<BR>5.2.6 Comparison of the composite roughness predictors in trapezoidal canal<BR>5.2.7 Prediction of composite roughness in a rectangular canal<BR>5.3 Governing equations for sediment transport<BR>5.3.1 Sediment transport capacity<BR>5.3.2 Comparison of sediment transport capacity<BR>5.3.3 Sediment transport computation in non-wide canals<BR>5.3.4 Comparison of the procedures for computing the total sediment transport<BR>5.3.5 Sediment transport in non-equilibrium conditions<BR>5.4 Morphological changes of the bottom level<BR>5.5 Conclusions</P><P>6. SETRIC, A MATHEMATICAL MODEL FOR SEDIMENT TRANSPORT IN IRRIGATION CANALS 120<BR>6.1 Introduction<BR>6.2 Water flow equations<BR>6.3 Sediment transport equations<BR>6.4 General description of the mathematical model<BR>6.5 Input and output data<BR>6.6 Conclusions</P><P>7. THE SEDIMENT TRANSPORT MODEL AND ITS APPLICATIONS<BR>7.1 Introduction<BR>7.2 Case 1 -- Changes in the discharges<BR>7.3 Case 2 -- Changes in the incoming sediment load<BR>7.4 Case 3 -- Controlled sediment deposition<BR>7.5 Case 4 -- Flow control structures<BR>7.6 Conclusions</P><P>REFERENCES</P><P>LIST OF SYMBOLS</P><P>APPENDIX A: METHODS TO ESTIMATE THE TOTAL SEDIMENT TRANSPORT CAPACITY IN IRRIGATION CANALS<BR>A.1 Introduction<BR>A.2 Ackers and White method<BR>A.3 Brownlie method<BR>A.4 Engelund and Hansen method<BR>A.5 Van Rijn method<BR>A.5.1 The suspended load transport<BR>A.6 Yang method</P><P>APPENDIX B: METHODS TO PREDICT THE FRICTION FACTOR<BR>B.1 Van Rijn<BR>B.2 Brownlie<BR>B.3 White, Paris and Bettess<BR>B.4 Engelund</P><P>APPENDIX C: HYDRAULIC DESIGN OF IRRIGATION CANALS<BR>C.1 Introduction<BR>C.2 Alignment of an irrigation canal<BR>C.3 Water levels<BR>C.4 Earthwork<BR>C.5 Design of irrigation canals<BR>C.6 Boundary shear stresses<BR>C.7 Sediment transport criteria<BR>C.8 Transport of the bed material<BR>C.9 Final remarks<BR>C.10 Computer aided design of canals</P><P>APPENDIX D: DESCRIPTION OF THE MAIN ASPECTS OF THE REGIME THEORY<BR>D.1 Some regime considerations<BR>D.1.1 Sediments<BR>D.1.2 Maturing of canals<BR>D.1.3 Slope adjustments<BR>D.1.4 Diversion of the sediment<BR>D.1.5 Maintenance aspects<BR>D.1.6 Flow capacity<BR>D.1.7 Design considerations</P><P>APPENDIX E: GLOSSARY</P><P>INDEX</P><P> </P>
Control code
ocn156928901
Dimensions
unknown
Extent
1 online resource (x, 227 pages)
File format
unknown
Form of item
online
Isbn
9781280858543
Lccn
2006034650
Level of compression
unknown
Note
Taylor & Francis
Other physical details
illustrations
Quality assurance targets
not applicable
Reformatting quality
unknown
Reproduction note
Electronic reproduction.
Sound
unknown sound
Specific material designation
remote
System control number
(OCoLC)156928901
System details
Master and use copy. Digital master created according to Benchmark for Faithful Digital Reproductions of Monographs and Serials, Version 1. Digital Library Federation, December 2002.

Library Locations

    • InternetBorrow it
      Albany, Auckland, 0632, NZ
Processing Feedback ...