Coverart for item
The Resource A first course in abstract algebra : rings, groups, and fields, Marlow Anderson, Todd Feil, (electronic resource)

A first course in abstract algebra : rings, groups, and fields, Marlow Anderson, Todd Feil, (electronic resource)

Label
A first course in abstract algebra : rings, groups, and fields
Title
A first course in abstract algebra
Title remainder
rings, groups, and fields
Statement of responsibility
Marlow Anderson, Todd Feil
Creator
Contributor
Subject
Language
eng
Cataloging source
CN3GA
http://library.link/vocab/creatorDate
1950-
http://library.link/vocab/creatorName
Anderson, Marlow
Dewey number
512/.02
Illustrations
illustrations
Index
index present
Literary form
non fiction
Nature of contents
  • dictionaries
  • bibliography
http://library.link/vocab/relatedWorkOrContributorDate
1951-
http://library.link/vocab/relatedWorkOrContributorName
Feil, Todd
http://library.link/vocab/subjectName
Algebra, Abstract
Label
A first course in abstract algebra : rings, groups, and fields, Marlow Anderson, Todd Feil, (electronic resource)
Instantiates
Publication
Copyright
Note
  • "A CRC title."
  • "A Chapman Hall Book"
Bibliography note
Includes bibliographical references and index
Carrier category
online resource
Carrier category code
cr
Carrier MARC source
rdacarrier
Content category
text
Content type code
txt
Content type MARC source
rdacontent
Contents
  • The Fibonacci Sequence
  • 9.3.
  • Ideals That Are Not Principal
  • 9.4.
  • All Ideals in Z Are Principal
  • 10.
  • Polynomials over a Field
  • 10.1.
  • Polynomials with Coefficients from an Arbitrary Field
  • 10.2.
  • Polynomials with Complex Coefficients
  • 1.4.
  • 10.3.
  • Irreducibles in R[x]
  • 10.4.
  • Extraction of Square Roots in C
  • Section II in a Nutshell
  • 11.
  • Ring Homomorphisms
  • 11.1.
  • Homomorphisms
  • 11.2.
  • Well Ordering Implies Mathematical Induction
  • Properties Preserved by Homomorphisms
  • 11.3.
  • More Examples
  • 11.4.
  • Making a Homomorphism Surjective
  • 12.
  • The Kernel
  • 12.1.
  • The Kernel
  • 12.2.
  • 1.5.
  • The Kernel Is an Ideal
  • 12.3.
  • All Pre-images Can Be Obtained from the Kernel
  • 12.4.
  • When Is the Kernel Trivial?
  • 12.5.
  • A Summary and Example
  • 13.
  • Rings of Cosets
  • 13.1.
  • The Axiomatic Method
  • The Ring of Cosets
  • 13.2.
  • The Natural Homomorphism
  • 14.
  • The Isomorphism Theorem for Rings
  • 14.1.
  • An Illustrative Example
  • 14.2.
  • The Fundamental Isomorphism Theorem
  • 14.3.
  • 2.
  • Examples
  • 15.
  • Maximal and Prime Ideals
  • 15.1.
  • Irreducibles
  • 15.2.
  • Maximal Ideals
  • 15.3.
  • Prime Ideals
  • 15.4.
  • The Integers
  • An Extended Example
  • 15.5.
  • Finite Products of Domains
  • 16.
  • The Chinese Remainder Theorem
  • 16.1.
  • Some Examples
  • 16.2.
  • Chinese Remainder Theorem
  • 16.3.
  • 2.1.
  • A General Chinese Remainder Theorem
  • Section III in a Nutshell
  • 17.
  • Symmetries of Geometric Figures
  • 17.1.
  • Symmetries of the Equilateral Triangle
  • 17.2.
  • Permutation Notation
  • 17.3.
  • Matrix Notation
  • The Division Theorem
  • 17.4.
  • Symmetries of the Square
  • 17.5.
  • Symmetries of Figures in Space
  • 17.6.
  • Symmetries of the Regular Tetrahedron
  • 18.
  • Permutations
  • 18.1.
  • Permutations
  • 2.2.
  • 18.2.
  • The Symmetric Groups
  • 18.3.
  • Cycles
  • 18.4.
  • Cycle Factorization of Permutations
  • 19.
  • Abstract Groups
  • 19.1.
  • Definition of Group
  • Machine generated contents note:
  • The Greatest Common Divisor
  • 19.2.
  • Examples of Groups
  • 19.3.
  • Multiplicative Groups
  • 20.
  • Subgroups
  • 20.1.
  • Arithmetic in an Abstract Group
  • 20.2.
  • Notation
  • 2.3.
  • 20.3.
  • Subgroups
  • 20.4.
  • Characterization of Subgroups
  • 20.5.
  • Group Isomorphisms
  • 21.
  • Cyclic Groups
  • 21.1.
  • The Order of an Element
  • The GCD Identity
  • 21.2.
  • Rule of Exponents
  • 21.3.
  • Cyclic Subgroups
  • 21.4.
  • Cyclic Groups
  • Section IV in a Nutshell
  • 22.
  • Group Homomorphisms
  • 22.1.
  • 2.4.
  • Homomorphisms
  • 22.2.
  • Examples
  • 22.3.
  • Structure Preserved by Homomorphisms
  • 22.4.
  • Direct Products
  • 23.
  • Structure and Representation
  • 23.1.
  • The Fundamental Theorem of Arithmetic
  • Characterizing Direct Products
  • 23.2.
  • Cayley's Theorem
  • 24.
  • Cosets and Lagrange's Theorem
  • 24.1.
  • Cosets
  • 24.2.
  • Lagrange's Theorem
  • 24.3.
  • 2.5.
  • Applications of Lagrange's Theorem
  • 25.
  • Groups of Cosets
  • 25.1.
  • Left Cosets
  • 25.2.
  • Normal Subgroups
  • 25.3.
  • Examples of Groups of Cosets
  • 26.
  • A Geometric Interpretation
  • The Isomorphism Theorem for Groups
  • 26.1.
  • The Kernel
  • 26.2.
  • Cosets of the Kernel
  • 26.3.
  • The Fundamental Theorem
  • Section V in a Nutshell
  • 27.
  • The Alternating Groups
  • 3.
  • 27.1.
  • Transpositions
  • 27.2.
  • The Parity of a Permutation
  • 27.3.
  • The Alternating Groups
  • 27.4.
  • The Alternating Subgroup Is Normal
  • 27.5.
  • Simple Groups
  • Modular Arithmetic
  • 28.
  • Sylow Theory: The Preliminaries
  • 28.1.
  • p-groups
  • 28.2.
  • Groups Acting on Sets
  • 29.
  • Sylow Theory: The Theorems
  • 29.1.
  • The Sylow Theorems
  • 3.1.
  • 29.2.
  • Applications of the Sylow Theorems
  • 29.3.
  • The Fundamental Theorem for Finite Abelian Groups
  • 30.
  • Solvable Groups
  • 30.1.
  • Solvability
  • 30.2.
  • New Solvable Groups from Old
  • 1.
  • Residue Classes
  • Section VI in a Nutshell
  • 31.
  • Quadratic Extensions of the Integers
  • 31.1.
  • Quadratic Extensions of the Integers
  • 31.2.
  • Units in Quadratic Extensions
  • 31.3.
  • Irreducibles in Quadratic Extensions
  • 31.4.
  • 3.2.
  • Factorization for Quadratic Extensions
  • 32.
  • Factorization
  • 32.1.
  • How Might Factorization Fail?
  • 32.2.
  • PIDs Have Unique Factorization
  • 32.3.
  • Primes
  • 33.
  • Arithmetic on the Residue Classes
  • Unique Factorization
  • 33.1.
  • UFDs
  • 33.2.
  • A Comparison between Z and Z[square root of -5]
  • 33.3.
  • All PIDs Are UFDs
  • 34.
  • Polynomials with Integer Coefficients
  • 34.1.
  • 3.3.
  • The Proof That Q[x] Is a UFD
  • 34.2.
  • Factoring Integers out of Polynomials
  • 34.3.
  • The Content of a Polynomial
  • 34.4.
  • Irreducibles in Z[x] Are Prime
  • 35.
  • Euclidean Domains
  • 35.1.
  • Properties of Modular Arithmetic
  • Euclidean Domains
  • 35.2.
  • The Gaussian Integers
  • 35.3.
  • Euclidean Domains Are PIDs
  • 35.4.
  • Some PIDs Are Not Euclidean
  • Section VII in a Nutshell
  • 36.
  • Constructions with Compass and Straightedge
  • 4.
  • 36.1.
  • Construction Problems
  • 36.2.
  • Constructible Lengths and Numbers
  • 37.
  • Constructibility and Quadratic Field Extensions
  • 37.1.
  • Quadratic Field Extensions
  • 37.2.
  • Sequences of Quadratic Field Extensions
  • Polynomials with Rational Coefficients
  • 37.3.
  • The Rational Plane
  • 37.4.
  • Planes of Constructible Numbers
  • 37.5.
  • The Constructible Number Theorem
  • 38.
  • The Impossibility of Certain Constructions
  • 38.1.
  • Doubling the Cube
  • 4.1.
  • 38.2.
  • Trisecting the Angle
  • 38.3.
  • Squaring the Circle
  • Section VIII in a Nutshell
  • 39.
  • Vector Spaces I
  • 39.1.
  • Vectors
  • 39.2.
  • Polynomials
  • Vector Spaces
  • 40.
  • Vector Spaces II
  • 40.1.
  • Spanning Sets
  • 40.2.
  • A Basis for a Vector Space
  • 40.3.
  • Finding a Basis
  • 40.4.
  • 4.2.
  • Dimension of a Vector Space
  • 41.
  • Field Extensions and Kronecker's Theorem
  • 41.1.
  • Field Extensions
  • 41.2.
  • Kronecker's Theorem
  • 41.3.
  • The Characteristic of a Field
  • 42.
  • The Natural Numbers
  • The Algebra of Polynomials
  • Algebraic Field Extensions
  • 42.1.
  • The Minimal Polynomial for an Element
  • 42.2.
  • Simple Extensions
  • 42.3.
  • Simple Transcendental Extensions
  • 42.4.
  • Dimension of Algebraic Simple Extensions
  • 43.
  • 4.3.
  • Finite Extensions and Constructibility Revisited
  • 43.1.
  • Finite Extensions
  • 43.2.
  • Constructibility Problems
  • Section IX in a Nutshell
  • 44.
  • The Splitting Field
  • 44.1.
  • The Splitting Field
  • The Analogy between Z and Q[x]
  • 44.2.
  • Fields with Characteristic Zero
  • 45.
  • Finite Fields
  • 45.1.
  • Existence and Uniqueness
  • 45.2.
  • Examples
  • 46.
  • Galois Groups
  • 4.4.
  • 46.1.
  • The Galois Group
  • 46.2.
  • Galois Groups of Splitting Fields
  • 47.
  • The Fundamental Theorem of Galois Theory
  • 47.1.
  • Subgroups and Subfields
  • 47.2.
  • Symmetric Polynomials
  • Factors of a Polynomial
  • 47.3.
  • The Fixed Field and Normal Extensions
  • 47.4.
  • The Fundamental Theorem
  • 47.5.
  • Examples
  • 48.
  • Solving Polynomials by Radicals
  • 48.1.
  • Field Extensions by Radicals
  • 4.5.
  • 48.2.
  • Refining the Root Tower
  • 48.3.
  • Solvable Galois Groups
  • Section X in a Nutshell
  • Linear Factors
  • 4.6.
  • Greatest Common Divisors
  • 5.
  • 1.1.
  • Factorization of Polynomials
  • 5.1.
  • Factoring Polynomials
  • 5.2.
  • Unique Factorization
  • 5.3.
  • Polynomials with Integer Coefficients
  • Section I in a Nutshell
  • 6.
  • Rings
  • Operations on the Natural Numbers
  • 6.1.
  • Binary Operations
  • 6.2.
  • Rings
  • 6.3.
  • Arithmetic in a Ring
  • 6.4.
  • Notational Conventions
  • 6.5.
  • The Set of Integers Is a Ring
  • 1.2.
  • 7.
  • Subrings and Unity
  • 7.1.
  • Subrings
  • 7.2.
  • The Multiplicative Identity
  • 7.3.
  • Surjective, Injective, and Bijective Functions
  • 7.4.
  • Ring Isomorphisms
  • Well Ordering and Mathematical Induction
  • 8.
  • Integral Domains and Fields
  • 8.1.
  • Zero Divisors
  • 8.2.
  • Units
  • 8.3.
  • Associates
  • 8.4.
  • Fields
  • 1.3.
  • 8.5.
  • The Field of Complex Numbers
  • 8.6.
  • Finite Fields
  • 9.
  • Ideals
  • 9.1.
  • Principal Ideals
  • 9.2.
  • Ideals
Control code
ocn907663195
Dimensions
unknown
Edition
Third edition
Extent
1 online resource
Form of item
online
Isbn
9781482245530
Isbn Type
(electronic bk.)
Media category
computer
Media MARC source
rdamedia
Media type code
c
Specific material designation
remote
System control number
(OCoLC)907663195
Label
A first course in abstract algebra : rings, groups, and fields, Marlow Anderson, Todd Feil, (electronic resource)
Publication
Copyright
Note
  • "A CRC title."
  • "A Chapman Hall Book"
Bibliography note
Includes bibliographical references and index
Carrier category
online resource
Carrier category code
cr
Carrier MARC source
rdacarrier
Content category
text
Content type code
txt
Content type MARC source
rdacontent
Contents
  • The Fibonacci Sequence
  • 9.3.
  • Ideals That Are Not Principal
  • 9.4.
  • All Ideals in Z Are Principal
  • 10.
  • Polynomials over a Field
  • 10.1.
  • Polynomials with Coefficients from an Arbitrary Field
  • 10.2.
  • Polynomials with Complex Coefficients
  • 1.4.
  • 10.3.
  • Irreducibles in R[x]
  • 10.4.
  • Extraction of Square Roots in C
  • Section II in a Nutshell
  • 11.
  • Ring Homomorphisms
  • 11.1.
  • Homomorphisms
  • 11.2.
  • Well Ordering Implies Mathematical Induction
  • Properties Preserved by Homomorphisms
  • 11.3.
  • More Examples
  • 11.4.
  • Making a Homomorphism Surjective
  • 12.
  • The Kernel
  • 12.1.
  • The Kernel
  • 12.2.
  • 1.5.
  • The Kernel Is an Ideal
  • 12.3.
  • All Pre-images Can Be Obtained from the Kernel
  • 12.4.
  • When Is the Kernel Trivial?
  • 12.5.
  • A Summary and Example
  • 13.
  • Rings of Cosets
  • 13.1.
  • The Axiomatic Method
  • The Ring of Cosets
  • 13.2.
  • The Natural Homomorphism
  • 14.
  • The Isomorphism Theorem for Rings
  • 14.1.
  • An Illustrative Example
  • 14.2.
  • The Fundamental Isomorphism Theorem
  • 14.3.
  • 2.
  • Examples
  • 15.
  • Maximal and Prime Ideals
  • 15.1.
  • Irreducibles
  • 15.2.
  • Maximal Ideals
  • 15.3.
  • Prime Ideals
  • 15.4.
  • The Integers
  • An Extended Example
  • 15.5.
  • Finite Products of Domains
  • 16.
  • The Chinese Remainder Theorem
  • 16.1.
  • Some Examples
  • 16.2.
  • Chinese Remainder Theorem
  • 16.3.
  • 2.1.
  • A General Chinese Remainder Theorem
  • Section III in a Nutshell
  • 17.
  • Symmetries of Geometric Figures
  • 17.1.
  • Symmetries of the Equilateral Triangle
  • 17.2.
  • Permutation Notation
  • 17.3.
  • Matrix Notation
  • The Division Theorem
  • 17.4.
  • Symmetries of the Square
  • 17.5.
  • Symmetries of Figures in Space
  • 17.6.
  • Symmetries of the Regular Tetrahedron
  • 18.
  • Permutations
  • 18.1.
  • Permutations
  • 2.2.
  • 18.2.
  • The Symmetric Groups
  • 18.3.
  • Cycles
  • 18.4.
  • Cycle Factorization of Permutations
  • 19.
  • Abstract Groups
  • 19.1.
  • Definition of Group
  • Machine generated contents note:
  • The Greatest Common Divisor
  • 19.2.
  • Examples of Groups
  • 19.3.
  • Multiplicative Groups
  • 20.
  • Subgroups
  • 20.1.
  • Arithmetic in an Abstract Group
  • 20.2.
  • Notation
  • 2.3.
  • 20.3.
  • Subgroups
  • 20.4.
  • Characterization of Subgroups
  • 20.5.
  • Group Isomorphisms
  • 21.
  • Cyclic Groups
  • 21.1.
  • The Order of an Element
  • The GCD Identity
  • 21.2.
  • Rule of Exponents
  • 21.3.
  • Cyclic Subgroups
  • 21.4.
  • Cyclic Groups
  • Section IV in a Nutshell
  • 22.
  • Group Homomorphisms
  • 22.1.
  • 2.4.
  • Homomorphisms
  • 22.2.
  • Examples
  • 22.3.
  • Structure Preserved by Homomorphisms
  • 22.4.
  • Direct Products
  • 23.
  • Structure and Representation
  • 23.1.
  • The Fundamental Theorem of Arithmetic
  • Characterizing Direct Products
  • 23.2.
  • Cayley's Theorem
  • 24.
  • Cosets and Lagrange's Theorem
  • 24.1.
  • Cosets
  • 24.2.
  • Lagrange's Theorem
  • 24.3.
  • 2.5.
  • Applications of Lagrange's Theorem
  • 25.
  • Groups of Cosets
  • 25.1.
  • Left Cosets
  • 25.2.
  • Normal Subgroups
  • 25.3.
  • Examples of Groups of Cosets
  • 26.
  • A Geometric Interpretation
  • The Isomorphism Theorem for Groups
  • 26.1.
  • The Kernel
  • 26.2.
  • Cosets of the Kernel
  • 26.3.
  • The Fundamental Theorem
  • Section V in a Nutshell
  • 27.
  • The Alternating Groups
  • 3.
  • 27.1.
  • Transpositions
  • 27.2.
  • The Parity of a Permutation
  • 27.3.
  • The Alternating Groups
  • 27.4.
  • The Alternating Subgroup Is Normal
  • 27.5.
  • Simple Groups
  • Modular Arithmetic
  • 28.
  • Sylow Theory: The Preliminaries
  • 28.1.
  • p-groups
  • 28.2.
  • Groups Acting on Sets
  • 29.
  • Sylow Theory: The Theorems
  • 29.1.
  • The Sylow Theorems
  • 3.1.
  • 29.2.
  • Applications of the Sylow Theorems
  • 29.3.
  • The Fundamental Theorem for Finite Abelian Groups
  • 30.
  • Solvable Groups
  • 30.1.
  • Solvability
  • 30.2.
  • New Solvable Groups from Old
  • 1.
  • Residue Classes
  • Section VI in a Nutshell
  • 31.
  • Quadratic Extensions of the Integers
  • 31.1.
  • Quadratic Extensions of the Integers
  • 31.2.
  • Units in Quadratic Extensions
  • 31.3.
  • Irreducibles in Quadratic Extensions
  • 31.4.
  • 3.2.
  • Factorization for Quadratic Extensions
  • 32.
  • Factorization
  • 32.1.
  • How Might Factorization Fail?
  • 32.2.
  • PIDs Have Unique Factorization
  • 32.3.
  • Primes
  • 33.
  • Arithmetic on the Residue Classes
  • Unique Factorization
  • 33.1.
  • UFDs
  • 33.2.
  • A Comparison between Z and Z[square root of -5]
  • 33.3.
  • All PIDs Are UFDs
  • 34.
  • Polynomials with Integer Coefficients
  • 34.1.
  • 3.3.
  • The Proof That Q[x] Is a UFD
  • 34.2.
  • Factoring Integers out of Polynomials
  • 34.3.
  • The Content of a Polynomial
  • 34.4.
  • Irreducibles in Z[x] Are Prime
  • 35.
  • Euclidean Domains
  • 35.1.
  • Properties of Modular Arithmetic
  • Euclidean Domains
  • 35.2.
  • The Gaussian Integers
  • 35.3.
  • Euclidean Domains Are PIDs
  • 35.4.
  • Some PIDs Are Not Euclidean
  • Section VII in a Nutshell
  • 36.
  • Constructions with Compass and Straightedge
  • 4.
  • 36.1.
  • Construction Problems
  • 36.2.
  • Constructible Lengths and Numbers
  • 37.
  • Constructibility and Quadratic Field Extensions
  • 37.1.
  • Quadratic Field Extensions
  • 37.2.
  • Sequences of Quadratic Field Extensions
  • Polynomials with Rational Coefficients
  • 37.3.
  • The Rational Plane
  • 37.4.
  • Planes of Constructible Numbers
  • 37.5.
  • The Constructible Number Theorem
  • 38.
  • The Impossibility of Certain Constructions
  • 38.1.
  • Doubling the Cube
  • 4.1.
  • 38.2.
  • Trisecting the Angle
  • 38.3.
  • Squaring the Circle
  • Section VIII in a Nutshell
  • 39.
  • Vector Spaces I
  • 39.1.
  • Vectors
  • 39.2.
  • Polynomials
  • Vector Spaces
  • 40.
  • Vector Spaces II
  • 40.1.
  • Spanning Sets
  • 40.2.
  • A Basis for a Vector Space
  • 40.3.
  • Finding a Basis
  • 40.4.
  • 4.2.
  • Dimension of a Vector Space
  • 41.
  • Field Extensions and Kronecker's Theorem
  • 41.1.
  • Field Extensions
  • 41.2.
  • Kronecker's Theorem
  • 41.3.
  • The Characteristic of a Field
  • 42.
  • The Natural Numbers
  • The Algebra of Polynomials
  • Algebraic Field Extensions
  • 42.1.
  • The Minimal Polynomial for an Element
  • 42.2.
  • Simple Extensions
  • 42.3.
  • Simple Transcendental Extensions
  • 42.4.
  • Dimension of Algebraic Simple Extensions
  • 43.
  • 4.3.
  • Finite Extensions and Constructibility Revisited
  • 43.1.
  • Finite Extensions
  • 43.2.
  • Constructibility Problems
  • Section IX in a Nutshell
  • 44.
  • The Splitting Field
  • 44.1.
  • The Splitting Field
  • The Analogy between Z and Q[x]
  • 44.2.
  • Fields with Characteristic Zero
  • 45.
  • Finite Fields
  • 45.1.
  • Existence and Uniqueness
  • 45.2.
  • Examples
  • 46.
  • Galois Groups
  • 4.4.
  • 46.1.
  • The Galois Group
  • 46.2.
  • Galois Groups of Splitting Fields
  • 47.
  • The Fundamental Theorem of Galois Theory
  • 47.1.
  • Subgroups and Subfields
  • 47.2.
  • Symmetric Polynomials
  • Factors of a Polynomial
  • 47.3.
  • The Fixed Field and Normal Extensions
  • 47.4.
  • The Fundamental Theorem
  • 47.5.
  • Examples
  • 48.
  • Solving Polynomials by Radicals
  • 48.1.
  • Field Extensions by Radicals
  • 4.5.
  • 48.2.
  • Refining the Root Tower
  • 48.3.
  • Solvable Galois Groups
  • Section X in a Nutshell
  • Linear Factors
  • 4.6.
  • Greatest Common Divisors
  • 5.
  • 1.1.
  • Factorization of Polynomials
  • 5.1.
  • Factoring Polynomials
  • 5.2.
  • Unique Factorization
  • 5.3.
  • Polynomials with Integer Coefficients
  • Section I in a Nutshell
  • 6.
  • Rings
  • Operations on the Natural Numbers
  • 6.1.
  • Binary Operations
  • 6.2.
  • Rings
  • 6.3.
  • Arithmetic in a Ring
  • 6.4.
  • Notational Conventions
  • 6.5.
  • The Set of Integers Is a Ring
  • 1.2.
  • 7.
  • Subrings and Unity
  • 7.1.
  • Subrings
  • 7.2.
  • The Multiplicative Identity
  • 7.3.
  • Surjective, Injective, and Bijective Functions
  • 7.4.
  • Ring Isomorphisms
  • Well Ordering and Mathematical Induction
  • 8.
  • Integral Domains and Fields
  • 8.1.
  • Zero Divisors
  • 8.2.
  • Units
  • 8.3.
  • Associates
  • 8.4.
  • Fields
  • 1.3.
  • 8.5.
  • The Field of Complex Numbers
  • 8.6.
  • Finite Fields
  • 9.
  • Ideals
  • 9.1.
  • Principal Ideals
  • 9.2.
  • Ideals
Control code
ocn907663195
Dimensions
unknown
Edition
Third edition
Extent
1 online resource
Form of item
online
Isbn
9781482245530
Isbn Type
(electronic bk.)
Media category
computer
Media MARC source
rdamedia
Media type code
c
Specific material designation
remote
System control number
(OCoLC)907663195

Library Locations

    • InternetBorrow it
      Albany, Auckland, 0632, NZ
Processing Feedback ...