Coverart for item
The Resource 5G mobile and wireless communications technology, edited by Afif Osseiran, Jose F. Monserrat, Patrick Marsch

5G mobile and wireless communications technology, edited by Afif Osseiran, Jose F. Monserrat, Patrick Marsch

Label
5G mobile and wireless communications technology
Title
5G mobile and wireless communications technology
Statement of responsibility
edited by Afif Osseiran, Jose F. Monserrat, Patrick Marsch
Title variation
5G Mobile & Wireless Communications Technology
Contributor
Editor
Subject
Language
eng
Cataloging source
OTZ
Dewey number
621.3845/6
Index
index present
Literary form
non fiction
Nature of contents
dictionaries
http://library.link/vocab/relatedWorkOrContributorName
  • Osseiran, Afif
  • Monserrat, Jose F.
  • Marsch, Patrick
http://library.link/vocab/subjectName
  • Global system for mobile communications
  • Mobile communication systems
Label
5G mobile and wireless communications technology, edited by Afif Osseiran, Jose F. Monserrat, Patrick Marsch
Instantiates
Publication
Note
  • Title from publisher's bibliographic system (viewed on 08 Jun 2016)
  • Written by leading experts in 5G research, this book is a comprehensive overview of the current state of 5G. Covering everything from the most likely use cases, spectrum aspects, and a wide range of technology options to potential 5G system architectures, it is an indispensable reference for academics and professionals involved in wireless and mobile communications. Global research efforts are summarised, and key component technologies including D2D, mm-wave communications, massive MIMO, coordinated multi-point, wireless network coding, interference management and spectrum issues are described and explained. The significance of 5G for the automotive, building, energy, and manufacturing economic sectors is addressed, as is the relationship between IoT, machine type communications, and cyber-physical systems. This essential resource equips you with a solid insight into the nature, impact and opportunities of 5G
Carrier category
online resource
Carrier category code
cr
Carrier MARC source
rdacarrier
Content category
text
Content type code
txt
Content type MARC source
rdacontent
Contents
  • Mobile communications generations: from 1G to 4G
  • Deployment enablers
  • 3.4.2.
  • Flexible function placement in 5G deployments
  • 3.5.
  • Conclusions
  • References
  • 4.
  • Machine-type communications
  • 4.1.
  • Introduction
  • 1.1.3.
  • 4.1.1.
  • Use cases and categorization of MTC
  • 4.1.2.
  • MTC requirements
  • 4.2.
  • Fundamental techniques for MTC
  • 4.2.1.
  • Data and control for short packets
  • 4.2.2.
  • Non-orthogonal access protocols
  • From mobile broadband (MBB) to extreme MBB
  • 4.3.
  • Massive MTC
  • 4.3.1.
  • Design principles
  • 4.3.2.
  • Technology components
  • 4.3.3.
  • Summary of mMTC features
  • 4.4.
  • Ultra-reliable low-latency MTC
  • 1.1.4.
  • 4.4.1.
  • Design principles
  • 4.4.2.
  • Technology components
  • 4.4.3.
  • Summary of uMTC features
  • 4.5.
  • Conclusions
  • References
  • 5.
  • IoT: relation to 5G
  • Device-to-device (D2D) communications
  • 5.1.
  • D2D: from 4G to 5G
  • 5.1.1.
  • D2D standardization: 4G LTE D2D
  • 5.1.2.
  • D2D in 5G: research challenges
  • 5.2.
  • Radio resource management for mobile broadband D2D
  • 5.2.1.
  • 1.2.
  • RRM techniques for mobile broadband D2D
  • 5.2.2.
  • RRM and system design for D2D
  • 5.2.3.
  • 5G D2D RRM concept: an example
  • 5.3.
  • Multi-hop D2D communications for proximity and emergency services
  • 5.3.1.
  • National security and public safety requirements in 3GPP and METIS
  • 5.3.2.
  • From ICT to the whole economy
  • Device discovery without and with network assistance
  • 5.3.3.
  • Network-assisted multi-hop D2D communications
  • 5.3.4.
  • Radio resource management for multi-hop D2D
  • 5.3.5.
  • Performance of D2D communications in the proximity communications scenario
  • 5.4.
  • Multi-operator D2D communication
  • 5.4.1.
  • 1.3.
  • Multi-operator D2D discovery
  • 5.4.2.
  • Mode selection for multi-operator D2D
  • 5.4.3.
  • Spectrum allocation for multi-operator D2D
  • 5.5.
  • Conclusions
  • References
  • 6.
  • Millimeter wave communications
  • Rationale of 5G: high data volume, twenty-five billion connected devices and wide requirements
  • 6.1.
  • Spectrum and regulations
  • 6.2.
  • Channel propagation
  • 6.3.
  • Hardware technologies for mmW systems
  • 6.3.1.
  • Device technology
  • 6.3.2.
  • Antennas
  • 1.3.1.
  • 6.3.3.
  • Beamforming architecture
  • 6.4.
  • Deployment scenarios
  • 6.5.
  • Architecture and mobility
  • 6.5.1.
  • Dual connectivity
  • 6.5.2.
  • Mobility
  • Machine generated contents note:
  • Security
  • 6.6.
  • Beamforming
  • 6.6.1.
  • Beamforming techniques
  • 6.6.2.
  • Beam finding
  • 6.7.
  • Physical layer techniques
  • 6.7.1.
  • Duplex scheme
  • 1.4.
  • 6.7.2.
  • Transmission schemes
  • 6.8.
  • Conclusions
  • References
  • 7.
  • The 5G radio-access technologies
  • 7.1.
  • Access design principles for multi-user communications
  • 7.1.1.
  • Global initiatives
  • Orthogonal multiple-access systems
  • 7.1.2.
  • Spread spectrum multiple-access systems
  • 7.1.3.
  • Capacity limits of multiple-access methods
  • 7.2.
  • Multi-carrier with filtering: a new waveform
  • 7.2.1.
  • Filter-bank based multi-carrier
  • 7.2.2.
  • 1.4.1.
  • Universal filtered OFDM
  • 7.3.
  • Non-orthogonal schemes for efficient multiple access
  • 7.3.1.
  • Non-orthogonal multiple access (NOMA)
  • 7.3.2.
  • Sparse code multiple access (SCMA)
  • 7.3.3.
  • Interleave division multiple access (IDMA)
  • 7.4.
  • METIS and the 5G-PPP
  • Radio access for dense deployments
  • 7.4.1.
  • OFDM numerology for small-cell deployments
  • 7.4.2.
  • Small-cell sub-frame structure
  • 7.5.
  • Radio access for V2X communication
  • 7.5.1.
  • Medium access control for nodes on the move
  • 7.6.
  • 1.4.2.
  • Radio access for massive machine-type communication
  • 7.6.1.
  • The massive access problem
  • 7.6.2.
  • Extending access reservation
  • 7.6.3.
  • Direct random access
  • 7.7.
  • Conclusions
  • References
  • China: 5G promotion group
  • 8.
  • Massive multiple-input multiple-output (MIMO) systems
  • 8.1.
  • Introduction
  • 8.1.1.
  • MIMO in LTE
  • 8.2.
  • Theoretical background
  • 8.2.1.
  • Single user MIMO
  • 1.4.3.
  • 8.2.2.
  • Multi-user MIMO
  • 8.2.3.
  • Capacity of massive MIMO: a summary
  • 8.3.
  • Pilot design for massive MIMO
  • 8.3.1.
  • The pilot-data trade-off and impact of CSI
  • 8.3.2.
  • Techniques to mitigate pilot contamination
  • Korea: 5G Forum
  • 8.4.
  • Resource allocation and transceiver algorithms for massive MIMO
  • 8.4.1.
  • Decentralized coordinated transceiver design for massive MIMO
  • 8.4.2.
  • Interference clustering and user grouping
  • 8.5.
  • Fundamentals of baseband and RF implementations in massive MIMO
  • 8.5.1.
  • Basic forms of massive MIMO implementation
  • 1.4.4.
  • 8.5.2.
  • Hybrid fixed BF with CSI-based precoding (FBCP)
  • 8.5.3.
  • Hybrid beamforming for interference clustering and user grouping
  • 8.6.
  • Channel models
  • 8.7.
  • Conclusions
  • References
  • 9.
  • 1.
  • Japan: ARIB 2020 and Beyond Ad Hoc
  • Coordinated multi-point transmission in 5G
  • 9.1.
  • Introduction
  • 9.2.
  • JT CoMP enablers
  • 9.2.1.
  • Channel prediction
  • 9.2.2.
  • Clustering and interference floor shaping
  • 9.2.3.
  • 1.4.5.
  • User scheduling and precoding
  • 9.2.4.
  • Interference mitigation framework
  • 9.2.5.
  • JT CoMP in 5G
  • 9.3.
  • JT CoMP in conjunction with ultra-dense networks
  • 9.4.
  • Distributed cooperative transmission
  • 9.4.1.
  • Other 5G initiatives
  • Decentralized precoding/filtering design with local CSI
  • 9.4.2.
  • Interference alignment
  • 9.5.
  • JT CoMP with advanced receivers
  • 9.5.1.
  • Dynamic clustering for JT CoMP with multiple antenna UEs
  • 9.5.2.
  • Network-assisted interference cancellation
  • 9.6.
  • 1.4.6.
  • Conclusions
  • References
  • 10.
  • Relaying and wireless network coding
  • 10.1.
  • The role of relaying and network coding in 5G wireless networks
  • 10.1.1.
  • The revival of relaying
  • 10.1.2.
  • From 4G to 5G
  • IoT activities
  • 10.1.3.
  • New relaying techniques for 5G
  • 10.1.4.
  • Key applications in 5G
  • 10.2.
  • Multi-flow wireless backhauling
  • 10.2.1.
  • Coordinated direct and relay (CDR) transmission
  • 10.2.2.
  • Four-way relaying (FWR)
  • 1.5.
  • 10.2.3.
  • Wireless-emulated wire (WEW) for backhaul
  • 10.3.
  • Highly flexible multi-flow relaying
  • 10.3.1.
  • Basic idea of multi-flow relaying
  • 10.3.2.
  • Achieving high throughput for 5G
  • 10.3.3.
  • Performance evaluation
  • Standardization activities
  • 10.4.
  • Buffer-aided relaying
  • 10.4.1.
  • Why buffers?
  • 10.4.2.
  • Relay selection
  • 10.4.3.
  • Handling inter-relay interference
  • 10.4.4.
  • Extensions
  • 1.5.1.
  • 10.5.
  • Conclusions
  • References
  • 11.
  • Interference management, mobility management, and dynamic reconfiguration
  • 11.1.
  • Network deployment types
  • 11.1.1.
  • Ultra-dense network or densification
  • 11.1.2.
  • ITU-R
  • Moving networks
  • 11.1.3.
  • Heterogeneous networks
  • 11.2.
  • Interference management in 5G
  • 11.2.1.
  • Interference management in UDN
  • 11.2.2.
  • Interference management for moving relay nodes
  • 11.2.3.
  • 1.5.2.
  • Interference cancelation
  • 11.3.
  • Mobility management in 5G
  • 11.3.1.
  • User equipment-controlled versus network-controlled handover
  • 11.3.2.
  • Mobility management in heterogeneous 5G networks
  • 11.3.3.
  • Context awareness for mobility management
  • 11.4.
  • Introduction
  • 3 GPP
  • Dynamic network reconfiguration in 5G
  • 11.4.1.
  • Energy savings through control/user plane decoupling
  • 11.4.2.
  • Flexible network deployment based on moving networks
  • 11.5.
  • Conclusions
  • References
  • 12.
  • Spectrum
  • 1.5.3.
  • 12.1.
  • Introduction
  • 12.1.1.
  • Spectrum for 4G
  • 12.1.2.
  • Spectrum challenges in 5G
  • 12.2.
  • 5G spectrum landscape and requirements
  • 12.2.1.
  • Bandwidth requirements
  • IEEE
  • 12.3.
  • Spectrum access modes and sharing scenarios
  • 12.4.
  • 5G spectrum technologies
  • 12.4.1.
  • Spectrum toolbox
  • 12.4.2.
  • Main technology components
  • 12.5.
  • Value of spectrum for 5G: a techno-economic perspective
  • 1.6.
  • 12.6.
  • Conclusions
  • References
  • 13.
  • The 5G wireless propagation channel models
  • 13.1.
  • Introduction
  • 13.2.
  • Modeling requirements and scenarios
  • 13.2.1.
  • Scope of the book
  • Channel model requirements
  • 13.2.2.
  • Propagation scenarios
  • 13.3.
  • The METIS channel models
  • 13.3.1.
  • Map-based model
  • 13.3.2.
  • Stochastic model
  • 13.4.
  • References
  • Conclusions
  • References
  • 14.
  • Simulation methodology
  • 14.1.
  • Evaluation methodology
  • 14.1.1.
  • Performance indicators
  • 14.1.2.
  • Channel simplifications
  • 2.
  • 14.2.
  • Calibration
  • 14.2.1.
  • Link-level calibration
  • 14.2.2.
  • System-level calibration
  • 14.3.
  • New challenges in the 5G modeling
  • 14.3.1.
  • Real scenarios --
  • 5G use cases and system concept
  • 2.1.
  • Use cases and requirements
  • 1.1.
  • 2.1.1.
  • Use cases
  • 2.1.2.
  • Requirements and key performance indicators
  • 2.2.
  • 5G system concept
  • 2.2.1.
  • Concept overview
  • 2.2.2.
  • Extreme mobile broadband
  • Historical background
  • 2.2.3.
  • Massive machine-type communication
  • 2.2.4.
  • Ultra-reliable machine-type communication
  • 2.2.5.
  • Dynamic radio access network
  • 2.2.6.
  • Lean system control plane
  • 2.2.7.
  • Localized contents and traffic flows
  • 1.1.1.
  • 2.2.8.
  • Spectrum toolbox
  • 2.3.
  • Conclusions
  • References
  • 3.
  • The 5G architecture
  • 3.1.
  • Introduction
  • 3.1.1.
  • Industrial and technological revolution: from steam engines to the Internet
  • NFV and SDN
  • 3.1.2.
  • Basics about RAN architecture
  • 3.2.
  • High-level requirements for the 5G architecture
  • 3.3.
  • Functional architecture and 5G flexibility
  • 3.3.1.
  • Functional split criteria
  • 3.3.2.
  • 1.1.2.
  • Functional split alternatives
  • 3.3.3.
  • Functional optimization for specific applications
  • 3.3.4.
  • Integration of LTE and new air interface to fulfill 5G requirements
  • 3.3.5.
  • Enhanced Multi-RAT coordination features
  • 3.4.
  • Physical architecture and 5G deployment
  • 3.4.1.
  • Device-to-device link
  • 14.3.6.
  • Moving networks
  • 14.4.
  • Conclusions
  • References
  • Contents note continued:
  • 14.3.2.
  • New waveforms
  • 14.3.3.
  • Massive MIMO
  • 14.3.4.
  • Higher frequency bands
  • 14.3.5.
Control code
ocn953455362
Extent
1 online resource (410 pages)
Form of item
online
Isbn
9781316417744
Isbn Type
(ebook)
Media category
computer
Media MARC source
rdamedia
Media type code
c
Specific material designation
remote
System control number
(OCoLC)953455362
Label
5G mobile and wireless communications technology, edited by Afif Osseiran, Jose F. Monserrat, Patrick Marsch
Publication
Note
  • Title from publisher's bibliographic system (viewed on 08 Jun 2016)
  • Written by leading experts in 5G research, this book is a comprehensive overview of the current state of 5G. Covering everything from the most likely use cases, spectrum aspects, and a wide range of technology options to potential 5G system architectures, it is an indispensable reference for academics and professionals involved in wireless and mobile communications. Global research efforts are summarised, and key component technologies including D2D, mm-wave communications, massive MIMO, coordinated multi-point, wireless network coding, interference management and spectrum issues are described and explained. The significance of 5G for the automotive, building, energy, and manufacturing economic sectors is addressed, as is the relationship between IoT, machine type communications, and cyber-physical systems. This essential resource equips you with a solid insight into the nature, impact and opportunities of 5G
Carrier category
online resource
Carrier category code
cr
Carrier MARC source
rdacarrier
Content category
text
Content type code
txt
Content type MARC source
rdacontent
Contents
  • Mobile communications generations: from 1G to 4G
  • Deployment enablers
  • 3.4.2.
  • Flexible function placement in 5G deployments
  • 3.5.
  • Conclusions
  • References
  • 4.
  • Machine-type communications
  • 4.1.
  • Introduction
  • 1.1.3.
  • 4.1.1.
  • Use cases and categorization of MTC
  • 4.1.2.
  • MTC requirements
  • 4.2.
  • Fundamental techniques for MTC
  • 4.2.1.
  • Data and control for short packets
  • 4.2.2.
  • Non-orthogonal access protocols
  • From mobile broadband (MBB) to extreme MBB
  • 4.3.
  • Massive MTC
  • 4.3.1.
  • Design principles
  • 4.3.2.
  • Technology components
  • 4.3.3.
  • Summary of mMTC features
  • 4.4.
  • Ultra-reliable low-latency MTC
  • 1.1.4.
  • 4.4.1.
  • Design principles
  • 4.4.2.
  • Technology components
  • 4.4.3.
  • Summary of uMTC features
  • 4.5.
  • Conclusions
  • References
  • 5.
  • IoT: relation to 5G
  • Device-to-device (D2D) communications
  • 5.1.
  • D2D: from 4G to 5G
  • 5.1.1.
  • D2D standardization: 4G LTE D2D
  • 5.1.2.
  • D2D in 5G: research challenges
  • 5.2.
  • Radio resource management for mobile broadband D2D
  • 5.2.1.
  • 1.2.
  • RRM techniques for mobile broadband D2D
  • 5.2.2.
  • RRM and system design for D2D
  • 5.2.3.
  • 5G D2D RRM concept: an example
  • 5.3.
  • Multi-hop D2D communications for proximity and emergency services
  • 5.3.1.
  • National security and public safety requirements in 3GPP and METIS
  • 5.3.2.
  • From ICT to the whole economy
  • Device discovery without and with network assistance
  • 5.3.3.
  • Network-assisted multi-hop D2D communications
  • 5.3.4.
  • Radio resource management for multi-hop D2D
  • 5.3.5.
  • Performance of D2D communications in the proximity communications scenario
  • 5.4.
  • Multi-operator D2D communication
  • 5.4.1.
  • 1.3.
  • Multi-operator D2D discovery
  • 5.4.2.
  • Mode selection for multi-operator D2D
  • 5.4.3.
  • Spectrum allocation for multi-operator D2D
  • 5.5.
  • Conclusions
  • References
  • 6.
  • Millimeter wave communications
  • Rationale of 5G: high data volume, twenty-five billion connected devices and wide requirements
  • 6.1.
  • Spectrum and regulations
  • 6.2.
  • Channel propagation
  • 6.3.
  • Hardware technologies for mmW systems
  • 6.3.1.
  • Device technology
  • 6.3.2.
  • Antennas
  • 1.3.1.
  • 6.3.3.
  • Beamforming architecture
  • 6.4.
  • Deployment scenarios
  • 6.5.
  • Architecture and mobility
  • 6.5.1.
  • Dual connectivity
  • 6.5.2.
  • Mobility
  • Machine generated contents note:
  • Security
  • 6.6.
  • Beamforming
  • 6.6.1.
  • Beamforming techniques
  • 6.6.2.
  • Beam finding
  • 6.7.
  • Physical layer techniques
  • 6.7.1.
  • Duplex scheme
  • 1.4.
  • 6.7.2.
  • Transmission schemes
  • 6.8.
  • Conclusions
  • References
  • 7.
  • The 5G radio-access technologies
  • 7.1.
  • Access design principles for multi-user communications
  • 7.1.1.
  • Global initiatives
  • Orthogonal multiple-access systems
  • 7.1.2.
  • Spread spectrum multiple-access systems
  • 7.1.3.
  • Capacity limits of multiple-access methods
  • 7.2.
  • Multi-carrier with filtering: a new waveform
  • 7.2.1.
  • Filter-bank based multi-carrier
  • 7.2.2.
  • 1.4.1.
  • Universal filtered OFDM
  • 7.3.
  • Non-orthogonal schemes for efficient multiple access
  • 7.3.1.
  • Non-orthogonal multiple access (NOMA)
  • 7.3.2.
  • Sparse code multiple access (SCMA)
  • 7.3.3.
  • Interleave division multiple access (IDMA)
  • 7.4.
  • METIS and the 5G-PPP
  • Radio access for dense deployments
  • 7.4.1.
  • OFDM numerology for small-cell deployments
  • 7.4.2.
  • Small-cell sub-frame structure
  • 7.5.
  • Radio access for V2X communication
  • 7.5.1.
  • Medium access control for nodes on the move
  • 7.6.
  • 1.4.2.
  • Radio access for massive machine-type communication
  • 7.6.1.
  • The massive access problem
  • 7.6.2.
  • Extending access reservation
  • 7.6.3.
  • Direct random access
  • 7.7.
  • Conclusions
  • References
  • China: 5G promotion group
  • 8.
  • Massive multiple-input multiple-output (MIMO) systems
  • 8.1.
  • Introduction
  • 8.1.1.
  • MIMO in LTE
  • 8.2.
  • Theoretical background
  • 8.2.1.
  • Single user MIMO
  • 1.4.3.
  • 8.2.2.
  • Multi-user MIMO
  • 8.2.3.
  • Capacity of massive MIMO: a summary
  • 8.3.
  • Pilot design for massive MIMO
  • 8.3.1.
  • The pilot-data trade-off and impact of CSI
  • 8.3.2.
  • Techniques to mitigate pilot contamination
  • Korea: 5G Forum
  • 8.4.
  • Resource allocation and transceiver algorithms for massive MIMO
  • 8.4.1.
  • Decentralized coordinated transceiver design for massive MIMO
  • 8.4.2.
  • Interference clustering and user grouping
  • 8.5.
  • Fundamentals of baseband and RF implementations in massive MIMO
  • 8.5.1.
  • Basic forms of massive MIMO implementation
  • 1.4.4.
  • 8.5.2.
  • Hybrid fixed BF with CSI-based precoding (FBCP)
  • 8.5.3.
  • Hybrid beamforming for interference clustering and user grouping
  • 8.6.
  • Channel models
  • 8.7.
  • Conclusions
  • References
  • 9.
  • 1.
  • Japan: ARIB 2020 and Beyond Ad Hoc
  • Coordinated multi-point transmission in 5G
  • 9.1.
  • Introduction
  • 9.2.
  • JT CoMP enablers
  • 9.2.1.
  • Channel prediction
  • 9.2.2.
  • Clustering and interference floor shaping
  • 9.2.3.
  • 1.4.5.
  • User scheduling and precoding
  • 9.2.4.
  • Interference mitigation framework
  • 9.2.5.
  • JT CoMP in 5G
  • 9.3.
  • JT CoMP in conjunction with ultra-dense networks
  • 9.4.
  • Distributed cooperative transmission
  • 9.4.1.
  • Other 5G initiatives
  • Decentralized precoding/filtering design with local CSI
  • 9.4.2.
  • Interference alignment
  • 9.5.
  • JT CoMP with advanced receivers
  • 9.5.1.
  • Dynamic clustering for JT CoMP with multiple antenna UEs
  • 9.5.2.
  • Network-assisted interference cancellation
  • 9.6.
  • 1.4.6.
  • Conclusions
  • References
  • 10.
  • Relaying and wireless network coding
  • 10.1.
  • The role of relaying and network coding in 5G wireless networks
  • 10.1.1.
  • The revival of relaying
  • 10.1.2.
  • From 4G to 5G
  • IoT activities
  • 10.1.3.
  • New relaying techniques for 5G
  • 10.1.4.
  • Key applications in 5G
  • 10.2.
  • Multi-flow wireless backhauling
  • 10.2.1.
  • Coordinated direct and relay (CDR) transmission
  • 10.2.2.
  • Four-way relaying (FWR)
  • 1.5.
  • 10.2.3.
  • Wireless-emulated wire (WEW) for backhaul
  • 10.3.
  • Highly flexible multi-flow relaying
  • 10.3.1.
  • Basic idea of multi-flow relaying
  • 10.3.2.
  • Achieving high throughput for 5G
  • 10.3.3.
  • Performance evaluation
  • Standardization activities
  • 10.4.
  • Buffer-aided relaying
  • 10.4.1.
  • Why buffers?
  • 10.4.2.
  • Relay selection
  • 10.4.3.
  • Handling inter-relay interference
  • 10.4.4.
  • Extensions
  • 1.5.1.
  • 10.5.
  • Conclusions
  • References
  • 11.
  • Interference management, mobility management, and dynamic reconfiguration
  • 11.1.
  • Network deployment types
  • 11.1.1.
  • Ultra-dense network or densification
  • 11.1.2.
  • ITU-R
  • Moving networks
  • 11.1.3.
  • Heterogeneous networks
  • 11.2.
  • Interference management in 5G
  • 11.2.1.
  • Interference management in UDN
  • 11.2.2.
  • Interference management for moving relay nodes
  • 11.2.3.
  • 1.5.2.
  • Interference cancelation
  • 11.3.
  • Mobility management in 5G
  • 11.3.1.
  • User equipment-controlled versus network-controlled handover
  • 11.3.2.
  • Mobility management in heterogeneous 5G networks
  • 11.3.3.
  • Context awareness for mobility management
  • 11.4.
  • Introduction
  • 3 GPP
  • Dynamic network reconfiguration in 5G
  • 11.4.1.
  • Energy savings through control/user plane decoupling
  • 11.4.2.
  • Flexible network deployment based on moving networks
  • 11.5.
  • Conclusions
  • References
  • 12.
  • Spectrum
  • 1.5.3.
  • 12.1.
  • Introduction
  • 12.1.1.
  • Spectrum for 4G
  • 12.1.2.
  • Spectrum challenges in 5G
  • 12.2.
  • 5G spectrum landscape and requirements
  • 12.2.1.
  • Bandwidth requirements
  • IEEE
  • 12.3.
  • Spectrum access modes and sharing scenarios
  • 12.4.
  • 5G spectrum technologies
  • 12.4.1.
  • Spectrum toolbox
  • 12.4.2.
  • Main technology components
  • 12.5.
  • Value of spectrum for 5G: a techno-economic perspective
  • 1.6.
  • 12.6.
  • Conclusions
  • References
  • 13.
  • The 5G wireless propagation channel models
  • 13.1.
  • Introduction
  • 13.2.
  • Modeling requirements and scenarios
  • 13.2.1.
  • Scope of the book
  • Channel model requirements
  • 13.2.2.
  • Propagation scenarios
  • 13.3.
  • The METIS channel models
  • 13.3.1.
  • Map-based model
  • 13.3.2.
  • Stochastic model
  • 13.4.
  • References
  • Conclusions
  • References
  • 14.
  • Simulation methodology
  • 14.1.
  • Evaluation methodology
  • 14.1.1.
  • Performance indicators
  • 14.1.2.
  • Channel simplifications
  • 2.
  • 14.2.
  • Calibration
  • 14.2.1.
  • Link-level calibration
  • 14.2.2.
  • System-level calibration
  • 14.3.
  • New challenges in the 5G modeling
  • 14.3.1.
  • Real scenarios --
  • 5G use cases and system concept
  • 2.1.
  • Use cases and requirements
  • 1.1.
  • 2.1.1.
  • Use cases
  • 2.1.2.
  • Requirements and key performance indicators
  • 2.2.
  • 5G system concept
  • 2.2.1.
  • Concept overview
  • 2.2.2.
  • Extreme mobile broadband
  • Historical background
  • 2.2.3.
  • Massive machine-type communication
  • 2.2.4.
  • Ultra-reliable machine-type communication
  • 2.2.5.
  • Dynamic radio access network
  • 2.2.6.
  • Lean system control plane
  • 2.2.7.
  • Localized contents and traffic flows
  • 1.1.1.
  • 2.2.8.
  • Spectrum toolbox
  • 2.3.
  • Conclusions
  • References
  • 3.
  • The 5G architecture
  • 3.1.
  • Introduction
  • 3.1.1.
  • Industrial and technological revolution: from steam engines to the Internet
  • NFV and SDN
  • 3.1.2.
  • Basics about RAN architecture
  • 3.2.
  • High-level requirements for the 5G architecture
  • 3.3.
  • Functional architecture and 5G flexibility
  • 3.3.1.
  • Functional split criteria
  • 3.3.2.
  • 1.1.2.
  • Functional split alternatives
  • 3.3.3.
  • Functional optimization for specific applications
  • 3.3.4.
  • Integration of LTE and new air interface to fulfill 5G requirements
  • 3.3.5.
  • Enhanced Multi-RAT coordination features
  • 3.4.
  • Physical architecture and 5G deployment
  • 3.4.1.
  • Device-to-device link
  • 14.3.6.
  • Moving networks
  • 14.4.
  • Conclusions
  • References
  • Contents note continued:
  • 14.3.2.
  • New waveforms
  • 14.3.3.
  • Massive MIMO
  • 14.3.4.
  • Higher frequency bands
  • 14.3.5.
Control code
ocn953455362
Extent
1 online resource (410 pages)
Form of item
online
Isbn
9781316417744
Isbn Type
(ebook)
Media category
computer
Media MARC source
rdamedia
Media type code
c
Specific material designation
remote
System control number
(OCoLC)953455362

Library Locations

    • InternetBorrow it
      Albany, Auckland, 0632, NZ
Processing Feedback ...